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ABSTRACT 

This dissertation is a theoretical and experimental study of sound in tubes with 

driven (or active) walls. Two geometries are considered: (1) a cylindrical tube of 

infinite length, and (2) a toroidal waveguide. 

For sound propagation in the first geometry, two cases are theoretically considered. 

The first case is that of a lossless fluid, and the second is a viscous and thermally 

conducting fluid. The derivation of the latter case closely follows Lord Rayleigh's 

derivation of sound propagation in a rigid tube. Theoretical results for the parti- 

cle velocity components of both cases are presented along with the three modes of 

propagation found in the second case. 

For sound propagation in the second geometry, the cases of rigid and driven wall 

toroids with lossless fluids are presented, along with methods for including losses in 

the system. Theoretical results for the pressure inside the toroid with various driving 

conditions and parameters are shown. 

Experimental measurements of the sound pressure levels in a toroid are presented 

and compared to theoretical results. To make some of these measurements, it was 

necessary to develop a device we are calling an acoustitron. Results show that the 

physical system is well represented by the theory presented in this work. 
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Introduction 

The propagation of sound in tubes and ducts has been so thoroughly studied that one 

might think that ail the problems of importance have been solved. This, however, is 

not the case. These studies, like many in other fields of physics, have been limited by 

the level of technology available at the time. For example, Kirchhoff [1] first derived 

the solution for sound propagation in viscous and thermally conducting fluid filled 

tubes in 1868. However, his results could not be verified by experiment. It was not 

until many years later that advances in transducer technology and electronics allowed 

such verification [2]. 

When working with sound propagation in tubes, the evaluation of any general 

solution involves specifying the boundary conditions at the tube wall. Such conditions 

require the specification of the motion and temperature of the wall as functions of 

time and position. In the cases treated until now, motion and temperature were 

controlled by the physical properties of the wall and the fluid. Kirchhoff and others 

following him [2-5], found that in order to match boundary conditions with such 

walls it was necessary to include thermal and viscous (vorticity) waves in addition 

to acoustic waves in the boundary layer.   (For an excellent source of information 



on the effects of entropy and vorticity fluctuations on sound propagation in tubes 

under various conditions, see Anderson [6].) There is also an extensive area of study 

involving sound propagation in tubes filled with incompressible fluids [7-13]. In such 

cases the effects of viscosity and thermal conductivity on the sound are insignificant 

compared to that due to the motion of the wall. 

An outline of various papers dealing with sound propagation in tubes is shown in 

Tables 0.1-0.3. Straight tubes, curved tubes, and combinations of both types have 

been studies for various wall conditions. Examples include rigid and porous walls for 

gas filled tubes, and elastic walls of various thicknesses for liquid filled tubes. The 

common factor in all these works is that only rigid and passive absorbing walls are 

considered. 

This dissertation studies both theoretically and experimentally a case not previ- 

ously treated—the case where a traveling wave is generated in the boundary layer 

and propagated with a controllable velocity and wave number. It is now possible to 

construct waveguides with such walls due to the development of digitally controlled 

signal processors. For a steady state wave in an infinitely long tube, the speed of 

the wave in the fluid will equal the speed of the wave in the wall. Of course an in- 

finitely long tube is not possible; however, a torus containing an integral number of 

wavelengths can approximate such a tube. 

In 1989, Ruppel [14] constructed a planar array of active surface elements to form 

a surface with independently controllable frequency and wave number. He used this 

surface to cancel obliquely incident acoustic plane waves by matching the normal 

components of the sound particle velocity and the velocity of the driven surface. He 

also demonstrated that such a surface could, in the absence of incident sound, produce 



a plane wave steered in a direction determined by the wave number of the surface. 

This idea has been extended to waveguides with active walls. 

The configuration considered here is a waveguide whose walls are moving with 

a vibratory motion normal to the surface with a controllable frequency and wave 

number. The wall motion is excited by a digital circuit capable of taking a single 

input signal and sending it sequentially to multiple outputs with a specific time delay 

between outputs. If the outputs are used to drive transducers in the walls of the 

waveguide, the wall will move with the motion approximated by the equation 

fuAtoz . 
r = a + Ar cos I — u>t I , (0.1) 

where At0 is the delay between outputs, d is the spacing between transducers in 

the wall, z is the distance in the axial direction, and u> is the angular frequency of 

vibration (see Fig. 0.1, for example). The quantity fcw, the wave number of the wall, 

is given by 

UlAtn 
fcw = —j1. (0.2) 

Such a circuit was built and used to make measurements inside a toroidal tube. 

*- z 

Figure 0.1: Simple design for a tube with active walls. In this example, three driving 
elements are attached to a short section of tube of radius a. 



In Chapter 1, the theoretical solution for sound propagation in an infinitely long 

tube with active walls is presented. Both the case of the ideal fluid, as well as the 

viscous and thermally conducting fluid are considered. Theoretical results of the 

velocity components for both cases are shown. 

In Chapter 2, the theoretical solution for sound propagation in a toroidal wave- 

guide with both rigid and driven walls is derived for the case of an ideal fluid. Two 

methods for including losses in the theory are presented. 

In Chapter 3, experimental measurements are presented for sound pressure levels 

in various toroidal tubes. Comparisons to theory are made for cases presented in 

Chapter 2. 
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Chapter 1 

Theory of the Straight Tube 

When working with sound propagation in tubes, the evaluation of any general solution 

involves specifying the boundary conditions at the tube wall. For liquids, where the 

walls of the tube are compliant, the wave motions in the wall and liquid are coupled 

together and are dependent upon the physical properties of the liquid and the wall 

[7-13]. The expansion of the wall in reaction to a pressure increase in the liquid lowers 

the effective bulk modulus of the liquid. The result is that the sound speed of the 

lowest order mode drops below the speed in the infinite medium. For gases, the tube 

wall impedance is generally much greater than that of the gas inside so that the wall 

is effectively rigid. For this case the lowest order mode of propagation corresponds to 

the speed of sound in the infinite medium. 

In his great work on acoustics, Lord Rayleigh [3] (Section 348-350) derives the 

exact solution for sound propagation in a rigid tube first solved by Kirchhoff [1]. 

His approach to the problem is to combine the four basic equations of acoustics 

into a single differential equation in terms of temperature, from which the velocity 

8 
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components can be derived. His solution for the components of velocity consists 

of three terms, each corresponding to a mode of propagation: the acoustic mode, 

the vorticity mode, and the temperature or entropy mode. The acoustic mode is the 

dominant mode and is what we refer to as sound. The vorticity mode is a shear wave 

traveling in the z direction above a plate moving back and forth in the x-y plane. 

The entropy mode is due to heat flow out of the fluid and into the conducting wall 

of the tube. This approach differs from that of Pierce [38], who solves the problem 

by considering the general field to be a linear superposition of individual modal fields 

that are uncoupled except at the boundaries. These modes are decomposed through 

dispersion relations, which relate the square of the wave number to the frequency. 

This is referred to as modal theory. In this chapter, Rayleigh's approach will be used 

to derive the exact solution for the viscid tube and then apply a driven wall boundary 

condition. (This derivation is adapted from lecture notes prepared by Raspet [39].) 

1.1    The Wave Equation 

Throughout this paper, solutions for the particle velocity and pressure of sound in 

cylindrical coordinates will be used.  It is therefore convenient to now solve for the 

general solution of the wave equation in such a coordinate system. 

The wave equation in terms of the velocity potential is given by 

The velocity potential is related to the particle velocity and pressure by u = V<I> 
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and p = —po(d$/dt), respectively. (For the derivation of the wave equation from the 

basic linear equations of acoustics, see Pierce [38].) In cylindrical coordinates, 

l± (r?*\ 
r dr \  dr ) + r2 dB2 + dz2 ~ c2 dt2' ( ' ' 

Assuming a solution of the form 

$ = R{r)Q(6)Z{z)exv(-iut) (1.3) 

and separating variables yields three equations (each a function of one of the coordi- 

nates): 

ele=-m' (L4) 

i^ - -k2 (1 5) 
Zdz~      *' (L°j 

IdR     dR     fu2     l2     m2\ n     n 

where kz and m are constants. The solution to Eq. (1.6) is 

R(r) = ArJm(kTr) + BrYm{kTr) (1.7) 

where 
u 2 

The solutions to Eqs. (1.4) and (1.5) can be written in terms of sines and cosines or 
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in terms of exponential functions, i.e., 

0(0)   =   A9e
im6 + B9e-ime, (1.9) 

Z(z)   =   A2e
ik*z + Bze-

ik*z, (1.10) 

or 

6(0)   =    Agcos(m0) + Besm(m6), (1.11) 

Z(z)   =   Azcos(kzz) + Bzsm{kzz). (1.12) 

These expressions for R(r), ©(6), and Z(z) when substituted into Eq. (1.3) give the 

general solution for the velocity potential in cylindrical coordinates. 

1.2    A Lossless Fluid Filled Tube with Driven Walls 

1.2.1    Theory 

Before solving for the viscid fluid filled tube, it is useful to start out with the simple 

case of an infinitely long tube filled with a lossless fluid, i.e., viscosity and thermal 

conductivity will be ignored. The desired solution is obtained by applying a driven 

wall boundary condition to Eq. (1.3). 

Let the radius of the tube be a with the axis oriented in the z direction as shown in 

Fig. 1.1. Azimuthal symmetry is assumed, which requires that the velocity potential 

have no 6 dependence, so that m = 0. Since r = 0 is contained in the region of 

interest, and the Neumann function becomes infinite at r = 0, Br must equal zero 
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*•  z 

Figure 1.1: The cylindrical tube. 

in Eq. (1.7). The general velocity potential for the acoustic wave traveling in the +z 

direction is then, 

$ = ArJoiKryV"2-"'). (1.13) 

Using this solution to solve for the radial and axial components of the particle velocity 

yields 

c2        ')      l\   V c2 v(r,z,t) = -Arl-- k\      Jx    rd- - k\    &*>-"\ (1.14) 

w 
c 
u?- (r,z,t) = ikzArJ0 \r\j-- kl ] e'(*.*-^). (U5) 

In order to solve for Ar and kz, it is necessary apply the boundary condition at 

the wall. Let the wall be driven at a frequency ut with a wave number kw. At r = a, 

the radial velocity v is 

v(a,z,t) = V0e
ilk*'-wtK (1.16) 

This boundary condition requires that the axial wave number kz be equal to the axial 

wall wave number kw. Solving for Ar in Eq. (1.14) yields the steady-state solution for 

the components of particle velocity amplitude (where v and w are now instantaneous 
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velocity amplitudes) 

„       Jx (W1 " (c/cw)2) 

V°      J, (kay/l - (c/cw)2) ' 

and 

(1.17) 

w —i 

Vo       y/(cw/cY - 1 jj ^a^/l _ (c/cw)2) ' 

where the wave number k has been introduced, which is defined as 

(1.18) 

k = uj/c, (1.19) 

and the wall wave velocity is 

cw=u;/fcw. (1.20) 

1.2.2     Results 

Figure 1.2 shows the ratio of the amplitude of the axial particle velocity to the ampli- 

tude of the wall vibration at a value of r = a/2 as a function of ka and cw. (The breaks 

in the ridges are due to the finite grid in the calculations.) When cw corresponds to 

the propagation speed for a rigid wall mode, driving the wall with with a finite am- 

plitude produces an infinite amplitude axial wave. Figure 1.3 is the corresponding 

plot for the component of the particle velocity in the radial direction. 

For sound propagation in fluid cylinders with rigid walls, there are only certain 

combinations of phase velocity and angular frequency allowed. These are referred 

to as modes of the system (see Jacobi [7] for example). Comparing Fig. 1.2 to the 

propagation modes for a fluid cylinder of the same dimensions with rigid walls, one 
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Figure 1.2: Normalized axial velocity amplitude for a lossless fluid filled tube as a 
function of the dimensionless wave number ka and propagation speed c^/c. Plot 
made for r = a/2. 
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Figure 1.3: Normalized radial velocity amplitude for a lossless fluid filled tube as 
a function of the dimensionless wave number ka and propagation speed c^/c. Plot 
made for r = a/2. 
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finds that the three ridges correspond to the first three symmetric modes of the rigid 

wall fluid cylinder. The ridge that follows cw/c = 1 corresponds to the (0,0) mode 

(which is the plane wave mode), the next ridge is the (0,1) mode and the third is 

the (0,2) mode. Inspection of Fig. 1.3 shows that there is very little plane wave 

component in the radial velocity at cw = c, so that the propagating plane wave is 

primarily a longitudinal wave. 

For the case of a fluid filled tube with rigid walls, the only modes that propagate 

are those that satisfy the condition that in Eq. (1.14) 

v\r=a = 0. (1.21) 

For the driven wall tube, however, there is no such restriction, so that waves of 

any combination of wave number and frequency can be produced. When the driving 

conditions of the tube correspond to cases of these rigid tube modes, the axial velocity 

amplitude is infinite because the denominator of Eq. (1.18) is zero. This is also true 

for the radial velocity when 0 < r < a except for the case of cw = c, where 

v       r 
lim- = -. (1.22) 

cw->c VQ      a 

This connection between the cases of the rigid and driven wall tubes will also be 

seen in the derivation of sound propagation in a toroidal waveguide carried out in 

Chapter 2. 

Figure 1.4 shows the amplitude of the axial velocity as a function of radial position 

and speed of propagation of the wave in the driven wall for ka = 1 which is well below 
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the cut-off frequency of the first order mode. Figure 1.5 shows the corresponding plot 

when the frequency is high enough to see the higher order modes. (Note that the axis 

has been rotated in order to better display the higher order modes.) 

Figures 1.6 and 1.7 show corresponding plots for the radial velocity as a function 

of r and cw for ka = 1 and ka = 8. Again the particle velocity becomes infinite when 

the driven wall is a nodal surface of a radial mode. On a plot with a finer scale the 

curved ridges become infinite in amplitude with notches at the Bessel function roots 

[see Eqs. (1.17) and (1.18)]. The figures present challenging questions about what 

is happening on the molecular scale. When the driven wall is at a nodal surface for 

radial motion, theoretically the wall experiences an infinite impedance. The sound 

pressure and the sound temperature fluctuations in the gas become infinite. Clearly it 

is important to investigate the viscous and thermal losses in the gas for these driving 

configurations. This investigation is the subject of the next section. 
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r 

Figure 1.4: Normalized axial velocity amplitude for a lossless fluid filled tube as a 
function of the dimensionless radial position r/a and propagation speed cw/c. Plot 
made for ka = 1. 
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Figure 1.5: Normalized axial velocity amplitude for a lossless fluid filled tube as a 
function of the dimensionless radial position r/a and propagation speed cw/c. Plot 
made for ka = 8. 
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Figure 1.6: Normalized radial velocity amplitude for a lossless fluid filled tube as a 
function of the dimensionless radial position and propagation speed cw/c. Plot made 
for ka = 1. 
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Figure 1.7: Normalized radial velocity amplitude for a lossless fluid filled tube as a 
function of the dimensionless radial position and propagation speed cw/c. Plot made 
for ka = 8. 
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1.3    Viscid and Thermally Conducting Fluid Filled 

Tube with Driven Walls 

1.3.1    Derivation of the General Equation 

To solve for the case of the viscid and thermally conductivity medium, one must 

begin with the basic conservation equations where the effects of viscosity and thermal 

conduction have been included. These are [38] 

--^ + V-u = 0, (1.23) 
po at 

du V2u + iv(V-u) 
o 

(1.24) 

PoTQ^t = «V2T, (1.25) 

JL.1(£), + ±(£W (,.„, 
Po     Po \dpJT       po \dTjp 

K      ' 

In these equations, the quantities p, p, T, and u are acoustic variables with small 

amplitudes. Equation (1.23) is the equation of continuity which expresses the con- 

servation of mass. Equation (1.24) is the Navier-Stokes equation which expresses the 

conservation of momentum. Equation (1.25) is the Fourier-Kirchhoff equation which 

expresses the conservation of energy. Equation (1.26) is the equation of state which 

results from assuming that the pressure is a function of temperature and density. 

The goal is to use these four equations to solve for the four acoustic variables listed 

above. Following Kirchhoff and Rayleigh, Eqs. (1.23)—(1.25) will be written in a more 
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compact form, and then solved for a single differential equation in terms of tempera- 

ture, from which expressions for the other three variables can be found. The ultimate 

goal is to solve for the particle velocity components in the presence of a boundary. 

Assume an exp(—iui) dependence so that d/dt can be replaced by — iu.  Then 

Eqs. (1.23)-(1.25) become 
iup       
 - + V-u = 0, (1.27) 

Po 

iujpou = Vp — fj. V2u + ^V(V-u) 
o 

(1.28) 

- iupoT0s = KV
Z
T. (1.29) 

Eliminating V • u in Eq. (1.28) and Eq. (1.27) and grouping the gradient terms 

together yields 

iupou + nV2u = V (p - %-^- V (1.30) 

where a = p/po is the condensation. Let 

Psp-ij-. (1-31) 

where V is a complex pressure with the real part corresponding to the pressure fluc- 

tuation in the medium and the imaginary part corresponding to a pressure associated 

with the shear force on the fluid. Then Eq. (1.30) becomes 

iupQU + fiV2u = VP. (1.32) 

This is the new Navier-Stokes equation. 
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Equation (1.29) can be rewritten using the entropy s(T,p) expanded by the chain- 

rule (see Appendix A); 

-iuT + iu<Tp0(—j   = ^^-, (1.33) 
/cV2r 

PoCv 

where Cv is the specific heat at constant volume given by, 

ßTJ 

Consider (dp/dp)s: 

^ = T0[^\   • (1.34) 

dp), \dpJT     \dT)\dp)i 

(dp/dP)3 

(dP/dp)q •   1 + »).(S.«): 

or 

7 - '-(%®> 7 = '-*"©,• 
dT\       1-7 

(1.35) 
ßP/s P0a 

where a = —pQ1(dp/dT)p is the coefficient of expansion, 7 is the ratio of specific 

heats and 

(dp/dp), 
//' = 7- 1.36) 
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Substituting this into Eq. (1.33) and multiplying through by 0/(7 - 1) yields 

-K^-^-S^OFT)-       (I-37) 

Let T be denned as a dimensionless temperature given by 

T^—-p (1.38) 

Substituting this into Eq. (1.37) yields 

K   —ti. - iuT - iuo- = ——V2T. (1.39) 
PoCv 

This is the new Fourier-Kirchhoff equation. 

Consider Eq. (1.26): 

= & + !-(*) T 
Po \ST, , 

=   4a + c^aT (1.40) 

where cf = (dp/dp)T and c2 = (dp/dp)s are the isothermal and adiabatic speed of 
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sound respectively. Substituting this along with Eq. (1.38) into Eq. (1.31) yields 

V = \4po - ^J a + p0 (4 - c2) T. (1.41) 

This the new equation of state. 

Grouping the new linear equations, 

-iu<r + Vu = 0, (1.42) 

iup0u + fiV2u = VV, (1.32) 

-ivT - iuo = ^V2T, (1.39) 

V=(C
2
TPO-^)<T + PO(4-C

2
)T, (1.41) 

constituting four equations and four unknowns T, u, V, and a. At this point, these 

equations can be combined to form a single equation in terms of only T. The solution 

for the temperature equation will be needed to derive the components of velocity 

because the entropy and the acoustic modes are coupled together. 

Taking the divergence of Eq. (1.32) yields 

iuV ■ u + -£■ V2 (V • u) = V2V. (1.43) 
Po 

Using Eqs. (1.42), (1.39), and (1.41) in Eq. (1.43) to eliminate u, V, and a yields 

\,5p0        po^vj J V tyo   /   lUpoCv 

u2T + C2 — lUJ 
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For convenience, the vorticity and entropy skin depths will be introduced where 

lv = \2t_ 
up0 

(1.45) 

and 

L = 
2K 

upo1/Cv 

Then Eq. (1.44) becomes 

(1.46) 

ur 
T + 

u 
\-i    —f + 

m   2u2n 
24        3c2 V2T -    1 

2/2> 

2io;2/: 

34 
il2 

^V4T = 0. 
2 

(1.47) 

This equation is a fourth-order differential equation which is a function of T only. 

From this equation, a solution for T can be found from which the solution for the 

particle velocity can be found. 

1.3.2    Solution for the Temperature Equation 

Assume a solution to Eq. (1.47) of the form 

T = AlQ1(r)eih'z + A2Q2(r)e ikzz (1.48) 

where 

V2 [Qil2(r)e'^] = A1)2Qli2(r)e"". (1.49) 
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Substitution into Eq. (1-47) requires Ai and A2 be the roots of 

u? 
-z + Alt: c 

Yu2l2     2w2/2\l       ,   /       2iu2l2\ il2 

Usually, the product of the thermoviscous skin depth and the wave number of 

the sound in the medium will be much less than one, so dropping insignificant terms 

yields 

-^- + A1,2-^2H«0. (1.51) 

The solutions for Aii2 are then 

^1,2 rs^ 

where 

is the acoustic root and 

-l±y/\+2il2(u>/c)2 

-iPe 

-l±l+^72(u;/C)2 

-ill 

1 Aj « —- 
c2 

.          2t 

e 

(1.52) 

(1.53) 

(1.54) 

is the thermal root. 

Consider an axially symmetric disturbance in a cylindrical tube of radius a ori- 

ented in the z direction as shown in Fig. 1.1. In cylindrical coordinates, Eq. (1.49) 

becomes 

^ [Qi,2(r)eik"] + ~ [Qil3(r)e*"] + ^ [Q^Y^] = \wQi*(r)eik«  (1.55) 
or2 r or L J      ozz 
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which becomes 

-dT+r-dT=(Xl'2 + ^Ql>2- (L56) 

The general solution for this equation is, from Section 1.1, 

Qia = Jo (ry/-kl - Ali2) (1.57) 

(Because r = 0 is contained in the region of interest, the Neumann function, which 

becomes infinite at r = 0, has been dropped.) 

Equation (1.44) can now be solved using Eq. (1.48) in terms of A^ and A2. These 

coefficients can then be evaluated using the boundary conditions at the tube wall to 

give the solution for the temperature fluctuations inside the tube as a function of 

position inside the tube. 

1.3.3  . Solution for the Velocity Equation 

At this point, the interest is in obtaining a solution for the axial and radial particle 

velocities associated with sound in the tube. Consider u = u' + u", where u' is the 

homogeneous solution and u" is the particular solution. Substituting Eq. (1.42) into 

Eq. (1.39) to eliminate a yields 

V-u' + V-u" + ^T + ^V2T = 0, (1.58) 

which relates the divergence of the velocity to the temperature, for which a solution 

has already been found. 
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Dividing this equation into its parts, the homogeneous equation is 

V-u' = 0, (1.59) 

and the particular equation is 

V • u" + iuT + ^ V2T = 0. (1.60) 

Assume a solution for the particular velocity 

u" = V [B,Q,{r)tik'z + B2Q2{r)eik'z] . (1.61) 

Substituting this into Eq. (1.60), along with the solution for T given by Eq. (1.48), 

yields 

0   =   ^■{V[BlQl(r)eik^ + B2Q2(r)eik'z]}+iu[AiQl(r) + A2Q2(r)]e 

2 

For this equation to always be true, 

ikzz 

f ^ {^V2 [^(rje*"] + A2V
2 [Q2(r)eik>z] } . (1.62) 

0   =    Bh2V
2[Qli2(r)eik*z]+iuAh2Qh2(r)eik*z 

+2f^i,2V
2 [Q,l2(r)e*'*] . (1.63) 
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Solving for Bi(2 using Eq. (1.49) gives 

, ^ + All2 J Bia = -A^ ^ Y + x^J (L64) 

which, along with Eq. (1.61), is the general solution for the particular part of the 

velocity. 

To find the solution for u', consider Eq. (1.32). The homogeneous part is 

xW + ^ W = 0. (1.65) 

This is a vector equation and holds for the individual components of u. 

Consider first the axial component so that Eq. (1.65) becomes 

.   ,     11 fd2w'      1 dw'     d2w'\ 
2  \ or2       r or       dz2 ) 

d2w'      \dw'     (   ,2     2»\    , ,       x 

dr2      r dr       \     z     I2 
V . 

which has an axisymmetric solution 

w' = A0Qoeik*z, (1.67) 

where 

Qo = Jo(r^-k2 + 2i/liy (1.68) 

Now consider the radial component of the homogeneous velocity. From Eq. (1.59) 



the relationship between w' and v' is 

r      dr 

Using a solution of the form 

in Eq. (1.69) yields 

From Eq. (1.66) 

dr       r dr \     z     /2 

which when substituted into Eq. (1.71) yields 

2t 

V . 

Solving for B0 and substituting into Eq. (1.70) gives 
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1 drv'     dw' 
r dr       dz 
v'     dv'     dw' 
r      dr      dz 
v'     dv' 

=   - + — + ikzw'. (1.69) 

v'^Bo^e*" (1.70) 
dr 

B0dQo dQo 
0   = : h B0— h ikzA0Q0 r   dr dr 

=   ft (^ + I^>) + it.A.Qo. (1.71) 

"-^   -   -f-« + ll«. (1.72) 

0 = -B0Q0 [-k2
z + ^)+ ikzAQQ0. (1.73) 

^m^w^-- «'■«> 
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Combining Eq. (1.67) with Eq. (1.61), the general solution for the axial component 

of the sound velocity in the tube is 

w   =   w' + w" 

d - «^"-Es 
i=i 

A]U (j2+ i'Qj{r)eikzz 

AoQo - J2 iAJk^ ( V + T ) Qj 

J'=I 
2       Xj 

~ikzz (1.75) 

Combining Eq. (1-74) with Eq. (1.61), the general solution for the radial compo- 

nent of the sound velocity in the tube is 

v   =   v' + v" 

_       iA0kz    dQp ikzZ 

2i/ll - kl dr 6 -E d_ 
dr Aj» ( ^ + Y ) Qi{r¥k* 

iA0kz    dQp _ Y^        /JH , j_\ rf^i 
2i/ll-k* dr      L,Aiu[  9   + \, 2       AJ7   dr 

ikzz ;i.76) 

where Qo, $i5 
and Q2 are defined by Eqs. (1.57) and (1.68). 

1.3.4    Application of the Driven Wall Boundary Condition 

Substituting the roots given by Eqs. (1.53) and (1.54) into Eqs. (1.75) and (1.76), the 

solution for the components of the velocity fluctuation in a cylindrical tube are 

we-Hk,z-*t) = AQQO _ iAxKu (lJL + lh\Ql_ ltA2kzl
2M7 - 1)Q2,      (1.77) 
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and 

ve^k.^) = JAok*tn*9°_AiU 
2i/Pv - kl dr (-S+f) tf\ dQx     1 dQi 

dr      2 
-A.ll^-l)^. (1.78) 

dr 

The goal is to determine AQ, Ai, and A2 given specific boundary conditions. 

Consider the walls of the tube to be driven at a constant driving velocity V0 with 

wave number kw and frequency a;. Also assume there is no slipping at the wall. The 

boundary conditions at the driven wall are then 

v\T=a   =   V0e
,"(fc"'-Ü,°, 

W\r=a     =     0, 

T\T=a     =     0, 

(1.79) 

(1.80) 

(1.81) 

where it has been assumed that the wall is infinitely more conducting than the fluid, so 

the temperature of the wall can be considered constant. Applying these to Eqs. (1.77) 

and (1.78) yields 

ic < 1 
0 = A0Q0{a) - iAxkzu r + -7T    Qi(«) " ««'^'M? " * )&(<»),        C1-82) 

u 

and 

y    i(k„z-wt)   -(ikzz-iwt)      _ iA0kz       dQo 
-k2

z+2i/Pv   dr r=a 
1    V   w2       2 )   dr 

J-A^M-f - I) dQ2 

dr r=o 
(1.83) 



35 

This boundary condition requires that the axial wave number kz be equal to the axial 

wall wave number kw. A0, A\, and A2 are obtained by combining Eqs. (1.82), (1.83), 

and (1.48) evaluated at r = a. Substituting the results into Eqs. (1.77) and (1.78) 

yields 

iD - Mä (kay     2 \a 

Jo (kry/2i/(klvy - {c/c^y) 

Jo (kay/2i/(klv)* - (c/cw)2) 

-   i{ka)2( — +lß {ka)2  '  2 V a 

Jo (kry/1 - {c/cY) 

Jo \ka>J\ - (c/cw)2J 

+   W2(^     2 
7-1 //, 

Jo (kry/2i/(kley - (c/c^f) 

Jo (kay/2i/{kley - (c/cw)*) ' 

for the axial particle velocity, and 

(1.84) 

V   „ -    \4 /   c 

D    =    (ka)*    - 
vfo \c, 

2i 
(kivy 

J1 (kry/2i/{klvy - (c/c„y) 

Jo (kay/2i/(klvy - (c/cw)^ 

-i/(ka)2 + 2(/e/2a)2 

2i(a/lv)
2 - (kac/cw)2 

+   (ka)\\l-[- 
(ka)1     2 \a. 
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Ji (kry/l - (c/cwy) 

Jo {Jcay/l - (c/cw)2J 

- w(i)Vp 
J, (kry/2i/(kle)* - (c/c„)A 

Jo (kay/2i/{kle)* - (c/c)^ 
(1.85) 

for the radial particle velocity where D is defined as 

D   =   (ka) 
2t c 

X 

(W„)2 

Jj (kay/2il{klvy - (c/cw)*) 

Jo (kay/2i/(klv)* - (c/cw)^ 

-i/(ka)2 + 2(/e/2a)2 

L2i(a//„)2 - (kac/cwy 

+   (ka)\l-    - 
(ka)2      2 Va 

Ji (fca>/l - (c/cw)2) 

Jo (ka^1 - (c/cw)2J 

- «■(*) ^ 
2t 

(He)
2 

Jt (fca>/2t7(We)2 - (c/cw)2) 

Jo (kay/2i/{kley - (c/c*)^ 
;i.86) 

These equations have been written in terms of the wave number k in the infi- 

nite medium and the wave velocity cw in the wall given by Eqs. (1.19) and (1.20), 

respectively. Each term in Eqs. (1.84) and (1.85) corresponds to a mode of propaga- 

tion determined by the nature of the root of the Bessel function.  The first term is 
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the vorticity mode, the second term is the acoustic mode, and the third term is the 

entropy mode. 

As a check, these equations should reduce to the results for the lossless fluid filled 

tube in Section 1.2. Letting /e —► 0 and /„ —>• 0 in Eqs. (1.84) and (1.86), the resulting 

solution for v/Vo is 

v       J, (kryfl - (c/c„)A 
lim   77 = —)  (, (1.87) 

which is identical to Eq. (1.17) for the case of the lossless fluid. 

The resulting solution for W/VQ is 

lim   —   = 
iJo (ka.y/1 - (c/c„)2) 

' Jo (kry/2i/(klvy - {c/c^y)      Jo (kry/l - (c/cw)^ 

J0(kay/2i/(klvy - (c/c^      Jo (kay/\ - (c/cw)^ 

For a large argument, the Bessel function can be expressed as 

.(1.88) 

(1.89) 

Let Im(x) > 0. Rewriting this equation in terms of real and complex components, it 

reduces to 

J0(x) R 
1 

2irx 
e-i(R4x)-ir/4)ehr(x)^ (1.90) 
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Now, 

■ *"'—-(£>' 
2i 

(kivy 

kr 
v (kivy 

r 
-   7-(l+0, (1-91) 

therefore, the first term in the brackets in Eq. (1.88) can be written as 

Jo (kry/2i/(klvy - (c/c„)A 
\ '   ~     lz.p-t\r-a)/l«p(r-a)/1 

J0 (kay/2%l{klvf - (c/cw)2) 
g-tr-aJ/Lgtr—j/l^ ^Q2) 

Since r < a, then (r — a) < 0, which will drive the exponent to zero as /„ —» 0. This 

will result in Eq. (1.88) becoming 

Jo (fcrVl - (c/cw)A 
lim  —=     . =—)  ( (1.93) 

'-.'.-oK,      V(Wc)2 - 1 J, (kay/\ - (c/c)») 

which is identical to Eq. (1.18) for the case of the inviscid fluid except where r = a. 

In that case the bracketed term in Eq. (1.88) goes to zero so that the axial velocity 

goes to zero at the wall as required by the viscid boundary condition. 
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Table 1.1: Thermal properties are for air at 27°C at atmospheric pressure. (Source: 
"Table of Thermal Properties of Gases," National Bureau of Standards Circular 564, 
Issue Date: November 1; 1955.) 

Parameter Value 
fi (kg m_1 s"1) 1.846xl0"5 

K (W m"1 K"1) 2.624 xlO-2 

po (kg m~3) 1.177 
Cv (J kg"1 K-1) 718.812 

7 1.4 
c (m s_1) 347.14 
a (cm) 1.0 

1.3.5    Theoretical Results for an Air Filled Tube 

In order to calculate velocities from Eqs. (1.84) and (1.85) it is necessary to specify 

the thermal properties of the fluid as well as the radius. The values used for these 

calculations are given in Table 1.1. The size of the vorticity and entropy skin depths 

corresponding to the given values are /„ = (2.13 x 10_3m Hz1/2)/-1/2 and le = (2.54 x 

10"3m Hz1/2)/"1/2 respectively. 

The normalized velocity amplitude of the system as a function of the dimensionless 

wave number ka and propagation speed of the wave in the wall cw/c is shown in 

Fig. 1.8 for the case of the radial velocity and Fig. 1.9 for the case of the axial 

velocity. Both are for r = a/2. These plots are similar to those of Section 1.2.2 

except for the radial velocity going to zero when cw = c. This can be seen from a 

closer examination of Eqs. (1.85) and (1.86). Setting cw = c yields D ^ 0 for all 

values of ka (see Fig. 1.10), so that the acoustic term of v is zero. Therefore, only 

the vorticity and entropy modes contribute to the radial velocity, which means that 
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Table 1.2: Outline of velocity amplitude figures. 

Variables Figure 
Independent(s) Constant Dependent 

ka, Cy,/c 

r = a/2 
V 1.8 
w 1.9 

cv/c w (acoustic) 1.11 
v (acoustic) 1.12 

ka = 1 

v (acoustic) 1.13 
v (vorticity) 1.14 
v (entropy) 1.15 
V 1.16 

r/a, cw/c w (acoustic) 1.18 
w (vorticity) 1.19 
w (entropy) 1.20 
w 1.21 

ka = 8 V 1.17 
w 1.22 

the total velocity is negligible compared to the radial amplitude of the wall. Note 

also that the velocity amplitude when the tube is driven with a frequency and wave 

number corresponding to a propagation mode in the rigid tube is no longer infinite, 

as for the case of the inviscid fluid filled tube, but is finite and very large. 

Inside the boundary layer when cw = c, although the acoustic mode and entropy 

mode are coupled, the amplitude of the entropy mode is non-zero while the acoustic 

mode has zero amplitude. A closer examination of the acoustic mode is shown in 

Figs. 1.11 and 1.12 where the axial and radial velocities for 7' = a/2 are shown. 

Curves for a lossless fluid, air, and water are shown for comparison. For the case 

of the axial velocity, the increased effect of viscosity not only lowers the maximum 

amplitude, but shifts the position of the peak along the curve of the inviscid fluid. 



41 

The result is that the peak actually occurs for cw < c. For the case of the radial 

velocity, the amplitude increases above the value for the lossless fluid for cw < c 

before dropping to zero. For values of cw > c, the amplitude increases asymptotically 

to approach the value for the lossless fluid. 

The radial velocities of the three modes of propagation are shown in Figs. 1.13- 

1.15, and the total velocity for ka = 1 and ka = 8 is shown in Figs. 1.16 and 1.17 for an 

air filled tube at atmospheric pressure. Corresponding figures for the axial velocities 

are shown in Figs. 1.18-1.22. (See Table 1.2 for an outline of all the velocity amplitude 

plots shown in this section.) As expected, the viscous and entropy modes are confined 

within the boundary layer at the wall. In most circumstances the thickness of this 

layer is only a few molecular mean free paths. However, comparison of Figs. 1.6 and 

1.13 for ka = 1 (that is, below the cutoff frequency of the first order mode) indicates 

that in a viscous and thermally conducting fluid, the radial motion of the driven wall 

excites radial motion in the thermal and viscous waves and leaves the acoustic wave 

in the body of the gas a plane wave without a radial component. 
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Figure 1.8: Normalized radial velocity amplitude as a function of the dimensionless 
wave number ka and propagation speed c„/c in an air filled tube. Plot made for 
r = a/2. 
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Figure 1.9: Normalized axial velocity amplitude as a function of the dimensionless 
wave number ka and propagation speed cw/c in an air filled tube. Plot made for 
r = a/2. 
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Figure 1.10: Plot of the magnitude D given by Eq. (1.86) for cw = c in an air filled 
tube. 
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Figure 1.11: Normalized acoustic mode radial velocity amplitude for tube filled with 
various types of fluid. Plot made for ka = 1 and r = a/2. 



46 

0.8 

0.7 

0.6 

0.5 

>       0.4 

0.3 

0.2  - 

0.1 

0.0  - 

 r ! r i -,T- T ' r ' r -i— T 1- i    ■    i    '    i    ' 

• i -i • i - inviscid fluid 
- /  air - 

- 
/ 

/ 

■i \  water • 
/ ■■ \ 

\ \ 
■■ i 

i i 

~ 

■• i 

- 

i i 

i i         ,' 

!!  .' /■ 

- 

■ 

" 
■ 

i i,i,i ->- i - ■ i  

0.9990 0.9994 0.9998 1.0002 1.0006 1.0010 

Cw/c 

Figure 1.12: Normalized acoustic mode radial velocity amplitude for tube filled with 
various types of fluid. Plot made for ka = 1 and r = a/2. 
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Figure 1.13: Normalized radial velocity amplitude of the acoustic mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka = 1. Note that at cw = c the amplitude of motion is zero for 
all values of r < a. 
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Figure 1.14: Normalized radial velocity amplitude of the vorticity mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka = 1. 
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Figure 1.15: Normalized radial velocity amplitude of the entropy mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka — 1. 
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Figure 1.16: Normalized total radial velocity amplitude as a function of the dimen- 
sionless radial position r/a and propagation speed Cy,/c in an air filled tube. Plot 
made for ka — \. Note that for cw = c the amplitude at the wall is such that 
\v/VQ\ = 1 as required by the boundary condition. 
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i 

Figure 1.17: Normalized total radial velocity amplitude as a function of the dimen- 
sionless radial position r/a and propagation speed cw/c in an air filled tube. Plot 
made for ka = 8. 
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Figure 1.18: Normalized axial velocity amplitude of the acoustic mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka = 1. 
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Figure 1.19: Normalized axial velocity amplitude of the vorticity mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka = 1. 
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Figure 1.20: Normalized axial velocity amplitude of the entropy mode as a function 
of the dimensionless radial position r/a and propagation speed cw/c in an air filled 
tube. Plot made for ka = 1. 
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Figure 1.21: Normalized total axial velocity amplitude as a function of the dimen- 
sionless radial position r/a and propagation speed cw/c in an air filled tube. Plot 
made for ka = 1. 
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Figure 1.22: Normalized total axial velocity amplitude as a function of the dimen- 
sionless radial position r/a and propagation speed cw/c in an air filled tube. Plot 
made for ka = 1. 
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1.4    Chapter Summary 

In this chapter, the solution for sound propagation in a cylindrical driven wall tube 

with a given wave number and phase velocity has been presented. The cases of a 

lossless fluid and a viscous and thermally conducting fluid are considered. It has 

been shown that the latter case is in agreement with the former when the viscosity 

and thermal conductivity are equal to zero. 

The results of these solutions show that the behavior of the sound particle velocity, 

in most respects, are very similar for both cases, except when cw = c. When such a 

driving condition exists, the radial velocity of the acoustic mode is no longer finite, 

as in the case of the ideal fluid, but is zero throughout the tube. At the same time, 

the axial velocity is no longer infinite, as in the case of the ideal fluid, but is finite 

with an amplitude that depends on the value of viscosity and thermal conductivity 

of the fluid medium. 



Chapter 2 

Theory of the Toroidal Waveguide 

In Chapter 1 the propagation of sound in an infinitely long straight tube has been 

considered. Experimentally, such a system can only be treated approximately, that is, 

it is not possible to build an infinitely long tube. It is possible, however, to construct a 

toroidal waveguide so that the effective path length over which the sound propagates 

is infinite. 

Previous work dealing with sound propagation in curved tubes have considered 

only the case of rigid walls [29-33,37] and porous walls [35,36]. In the present work, 

the case of a toroid with rigid walls will first be considered, then the case of one 

with driven walls. It will be shown that, as for the cylindrical tube in Chapter 1, the 

solution for the rigid wall case will give some insight to the driven wall solution. 

The geometry considered throughout this chapter is that of a toroidal duct with a 

rectangular cross-section. Let the toroid have an an inside radius of a and an outside 

radius b as shown in Fig. 2.1. The height of the toroid is z = h with the base assumed 

to be in the x-y plane. Solutions will be sought in the form of waves traveling in the 

58 
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+ y 

Figure 2.1: The Toroidal Waveguide. 

azimuthal direction. The solution that will be used for the velocity potential derived 

in Section 1.1 is 

$ = [ATJm(kTr) + BrYm(krr)} [Azcos{kzz) + Bzsm(kzz)} j^-»1).        (2.1) 

In general, it is required that $(r,0,z,i) = $(r,0 + 2ir,z,t). This requires that 

m be an integer.   Because the propagation of sound is defined to be along 9, it is 

convenient to think of m as analogous to a wave number. Following the convention 

of Krasnushkin [40], m will be referred to as the angular wave number. Because the 

phase of the velocity potential is given by <j> = m9 - ut, the constant angular phase 

velocity (d0/<ft)^constant is 

£■«—-• (2-2) 
at m 
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2.1     General Theory for the Lossless Toroid 

First the general theory for sound propagation in a lossless fluid filled toroid with 

rigid walls will be developed, then the theory for driven walls will be developed. For 

the case of the driven wall toroid, an expression for the velocity potential in terms of 

an arbitrary function f(9) will be used so that any desired driving condition may be 

treated. 

2.1.1    Rigid Wall Condition 

In a toroid with rigid walls, the normal component of the fluid particle velocity is 

zero at the walls, i.e., 

d$r 

dz 
d$r 

2=0 

dr 

dz 
= 0, 

z=h 

dr 
= 0, 

(2.3) 

(2.4) 
•=6 

for a given value of angular wave number m.  Using Eq. (2.1) with these boundary 

conditions yields 
717T 

(2.5) Bz = 0,     kz = —     (n = 0,±l,±2...), 
a 

and 

AmJ'm(kTa) + BmY^(kra)   =   0, 

AmJ'm{krb) + BmY^(krb)   =   0. 

(2.6) 

(2.7) 

Non-trivial solutions for Am and Bm occur only when the determinant of the 
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coefficients is equal to zero, that is 

J'm(kra)Y^(krb) - J'm(krb)Yi(kra) = 0. (2.8) 

Now define 

ß = kra (2.9) 

so that 

J'm(ß)KW*) ~ J'JßWKiß) = 0. (2.10) 

The solution to this equation is then 

ß = ßmP, (2.11) 

where ßmp is the pth root of Eq. (2.10) for a given m. From Eq. (1.8), 

wmnp = c\ (£)' + (=)\ 
where ujmnp are the characteristic (or normal mode) frequencies. 

Equation (2.11) may be used to solve for the ratio of Bm to Am given by Eq. (2.6). 

Substituting this result and Eq. (2.5) into Eq. (2.1), yields a general solution for the 

velocity potential, 

oo oo oo 
-   _     V-^      V^      V^ A \ T     [ßmpr\        v    (ß™-Pr\   JL(ßmp) *- 2.  i, 2.     ^J"l~i    wW^-)j 

771 = —CO 71=: — CO p= —CO 

X cos (ÜI£) e.-M-«0. (2.13) 
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A similar result was derived by Rostafinski [31] and Grigor'yan [33]. 

Now consider Eq. (2.10) for the case of a toroid whose width is much less than its 

radius, i.e., 
b 
- = l + e,            0<e<l, 
a 

(2.14) 

so that 

JL(ß)K(ß + eß) - Uß + tß)YL(ß) = o. (2.15) 

Expanding the Bessel functions for ßt <C 1 in a Taylor series expansion yields 

o = J'm(ß)K(ß) - Mß)K(ß) 

+ j[JL{ß)YZiß)-JZ(ß)K(ß)] 

+   Ö(ß2e2). (2.16) 

Using the following identities for the difference of the products of Bessel and Neumann 

function derivatives [41], 

JMY:(X)-J:(X)YM = £(i-=r), (2.17) 

■KX1   \   Xz             J 
(2.18) 

in Eq. (2.16) yields 

(2.19) a          I2 ~ 3e 

or from Eq. (2.12), 

(2.20) —Ve28^)+(T)- 
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Consider the case for n = 0, i.e., no variation of wave properties in the z direction, 

so that 
mr     10 — "Xf 

(2.21) U!m = 
a  V  2-e 

Expanding the square root for small e 

(2 - e)-1'2 x (2 - 3c)1'2 1 + \e + 0(e2) 

1 
=   l-le + 0(e2). 

x2 1 - -e + C?(e2) 

(2.22) 

Therefore to first order in e, 

mc /        1 
(2.23) 

These characteristic frequencies correspond to those of integral wavelengths along 

the "center" circumference of the toroid. This can be demonstrated by considering a 

straight duct of length / = ir(a + b) (the "center" circumference of the toroid). The 

frequencies of waves with an integral number of wavelengths over / are u> = 2irmc/l. 

From Eq. (2.14), b = a(l + e). Substituting this into /, the frequencies of waves that 

fit in this straight duct are 

'a + bs -l 

a/   =   mc 

fa ,  a(l+e) 
mc   2 + ~T~ 
mc I        1 -i 
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which is identical to Eq. (2.23). Note that the similarity of the toroid to a straight duct 

requires that ßt = krae <C 1, so that this approximation is only valid for wavelengths 

that are large compared to the width of the tube. Therefore in this limit, the shape 

of the bend has no effect on sound propagation. This result is the same as derived by 

Rostafinski [31], and even earlier by Lord Rayleigh [3] (Section 263). 

2.1.2    The Driven Wall Condition 

Let the outer and inner walls of the toroid now be driven with an angular dependent 

velocity function f(0) while the top and bottom walls are kept rigid (Fig. 2.2), i.e., 

d$r. 
dz 

d$r 

z=0 dz 

dr 

z=h 

—iuit 

dr 
r=6 

0, (2.25) 

=   V0f(9)e-tut, (2.26) 

=   -Vof(0)e-^, (2.27) 

where V0 is the velocity amplitude of the wall. Note that the inner and outer walls 

move in opposite directions, as indicated by the minus sign in Eq. (2.26). 

Equation (2.25) again yields the result for k2 given by Eq. (2.5). All driving 

conditions considered will be those with no z dependence, so that there will be no 

variation of wave properties in the z direction, i.e., n — 0. 

As stated earlier, a general solution in terms of 6 without any restrictions on the 

motion of the wall is desired. For this reason, it is convenient to write the 6 dependence 
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Figure 2.2: Toroid with inner and outer driven walls and upper and lower rigid walls. 

of the driven boundary condition as the sum over all possible angular wave numbers 

in the wall by Fourier decomposing f(9). Therefore, f(0) can be written as a Fourier 

sum. 

W) = £ V*, 
/=-oo 

where 

Ai = ^f_f{0')e-iie'd6'. 

(2.28) 

(2.29) 

All that is then required to solve for the velocity potential is an expression de- 

scribing the driving wall in terms of 9. 
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2.2    Application of Boundary Conditions:   Delta 

Function Driver 

2.2.1    Theory 

Consider the case of a toroid with all rigid walls except for a single driving element 

located at dj, so that 

f(0) = 6(0 - eA). (2.30) 

For convenience, the x-y axes will be oriented so that 6<i = 0. When substituted into 

Eq. (2.29), the result is 

Ai = ijyff)e""'de,=h <2-3» 
Equations (2.26) and (2.27) then become, 

dr 

dr 

= E 2Te'('*""")' (2-32) 
/=—oo 

oo v 

=    J2 -^-eW-'K (2.33) 
r=6 te_ 27T 

oo 

Note that the amplitude of each angular wave number component will be the same. 

Each positive wave number has a corresponding negative wave number of the same 

amplitude. The result will therefore be a standing wave inside the toroid. 

Using the general solution for the velocity potential, Eq. (2.1), in the above 
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(excluding the z dependence) yields, 

OO       j T oo 

E Y/
9
 =   E  ^ ^J'm(Ka) + BmY^(kTa)] e™9, (2.34) 

l=—oo m=—oo 

oo -. oo 

E -£eil9=   E  M^«C(M) + SmOM)] e«mfl, (2.35) 
J=—oo m=—oo 

where &r = u;/c. 

In order to solve for Am and 5m, multiply both sides of Eqs. (2.34) and (2.35) by 

exp(—ij9), where j is an integer, and integrate over dO from — ir to w. Integrating 

both sides over 9 results in Kronecker S functions 8\j and Smj on the left and right 

sides respectively. The sums over m and / thus produce single terms in j. (Since j 

is just a dummy index, it will be replaced with m for convenience.) Equations (2.34) 

and (2.35) then become 

~   =   AmkTJ'm(kra) + BmkrY^{kra), (2.36) 

~   =   Amkr J'm(krb) + BmkrY^(krb). (2.37) 

Solving for Am and Bm yields, 

Am = 2^k:[K{Ka)+K{krb)]' (2-38) 

Bm = 2^- [J'm(Ka) + J'm(krb)}, (2.39) 
"rL-im 

where 

Am = J'm{kra)Y^{kTb) - J'm(krb)Y^(kra). (2.40) 
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Comparison to Eq. (2.8) reveals that the frequencies that yield Am = 0 are the 

characteristic frequencies of the rigid wall toroid, u;mp, given by Eq. (2.12) with n = 0. 

From Eq. (2.1), the general solution for the velocity potential is then, 

$   = ä£   £   ^{[y^ra) + Y^(krb)]Jm(krr) 

- [J'm(kTa) + J'm(kTb)] Ym{kTr)y^e-^\ (2.41) 

which involves the sum over all possible values of angular wave number. The corre- 

sponding pressure p = —pQd$/dt is 

OO - 

' jk = T* £ s:{K(M+»:(w)]j.(fcr, 
m=—oo 

- [J'Jkra) + J'm(krb)} Ym(krr)}e^me-^. (2.42) 

Since 

Y.m(x) = (-l)mYm(x), (2.43) 

and 

J-m(x) = (-l)m Jn(x), (2.44) 

the pressure can be written as 

POCVQ 
7   =   iJ2-^{iY^kra) + K(krb)}Jm(krr) 

T7l=0 

- [J'm(kTa) + J'm(krb)} Ym(krr)} cos (mo) e",w>. (2.45) 
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This pressure corresponds to a standing wave inside the toroid with a frequency de- 

pendent amplitude. As pointed out above, the behavior of ATO is such that when the 

driving frequency corresponds to a characteristic frequency of the rigid wall toroid, 

this term is zero. This will result in an infinite pressure with the driving element locat- 

ed at a pressure antinode. Therefore, even though there is no restriction placed on the 

driving frequency, if the driving frequency is not one of the characteristic frequencies, 

the pressure amplitude will be negligible compared to the pressure corresponding to 

a characteristic frequency. As shown in Section 2.1, in the low frequency limit, these 

characteristic frequencies are those that fit a whole number of wavelengths along the 

circumference of the toroid. 

2.2.2    Theoretical Results for a Lossless Fluid 

For a toroid with dimensions given in Table 3.1, the pressure as a function of angular 

position in the toroid is shown in Fig. 2.3 for a frequency close to the first characteristic 

frequency, and in Fig. 2.4 for the second characteristic frequency. These calculations 

include the first thirty terms in the sum. It was necessary to use only these terms 

because contributions to the sum for higher terms are negligible for the frequencies 

of interest. The response of this tube at these frequencies is similar to that of a pipe 

of length / = 7r(a + 6)/2 with a piston driver at one end and the other end closed, as 

shown in the expansion for a narrow tube shown in in Section 2.1.1. In the toroid, the 

first characteristic frequency corresponds to a wavelength equal to the circumference 

around the tube, so that at this frequency there are two antinodes, each located 

halfway between the driver and the opposite side. The phase of the pressure changes 
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by ir at each antinode as expected for the case of a standing wave. 

Figures 2.5 and 2.6 plot the pressure as a function of angular position in the toroid 

for frequencies that do not correspond to characteristic frequencies. One can see 

that the pressure amplitude is much less than that corresponding to a characteristic 

frequency. 
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Figure 2.3: Theoretical complex pressure inside a toroid as a function of angular 
position driven with a single driving element. The driving element is located at 
9 = 0. The driving frequency differs from the first characteristic frequency by 0.07%. 
Only the first thirty terms in the sum have been used. 
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Figure 2.4: Theoretical complex pressure inside a toroid as a function of angular 
position driven with a single driving element. The driving element is located at 
0 = 0. The driving frequency differs from the second characteristic frequency by 
0.07%. Only the first thirty terms in the sum have been used. 
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Figure 2.5: Theoretical complex pressure inside a toroid as a function of angular 
position driven with a single driving element. The driving element is located at 
9 = 0. The driving frequency is halfway between the first and second characteristic 
frequency. Only the first thirty terms in the sum have been used. 
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Figure 2.6: Theoretical complex pressure inside a toroid as a function of angular 
position driven with a single driving element. The driving element is located at 
0 = 0. The driving frequency is a quarter of the way between the first and the second 
characteristic frequency. Only the first thirty terms in the sum have been used. 



75 

2.3    Application of Boundary Conditions: Driven 

Wall 

2.3.1    Theory 

Consider the case of a toroidal waveguide with a sinusoidal wave propagating along 

the wall between — ir < 9 < TT with an angular phase velocity ft. No restrictions will 

be placed on the choice of ft so that in general, a discontinuity in the driven wall will 

exist at 9 = TT. Based on Eq. (2.2), the chosen 9 dependence will be 

f(9) = ei"e/a. (2.46) 

(Note that ft = ftm is not required, i.e., the value of w/ft is not necessarily an integer.) 

When substituted into Eq. (2.29), the result is 

=   — /" eiMQ-W'd9' 

1 f>/o-')» _ --t-(w/n-/)*i 
2i(w/ft - l)x L J 

sin(a;/r2 — l)ir 

(w/n-/)7T   " 
(2.47) 

For this driving condition, the amplitude of each angular mode will vary as a function 

of frequency and angular phase velocity. 
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Equations (2.26) and (2.27) then become, 

d$r 

dr =    EVo 
sin(w/ft-0w ue -iu,t e   e      , 

dr 

l=-oo 
oo 

'=b 
= E-w 

(w/n - i)v 

sin(u>/fi — l)ir il9 

l=-oo 
(w/n - /)TT 

e   e tait 

(2.48) 

(2.49) 

Using the general solution for the velocity potential given by Eq. (2.1) in the above 

and excluding the z dependence yields 

sm(u>/fl — 1)TC { 

£ Vo   (Jn-l)l  eil6=   S  kr[AmJ'm(kra) + BmY^kra)]eimS,        (2.50) 
/=—oo ' m=—oo 

E -V°7wn%^C,<'=   S  M>W;(M) + BmOM)]e«mfl,       (2.51) 
(=—oo m=—oo 

where &r = w/c. 

Following the same path used to reach Eqs. (2.36) and (2.37), these equations 

become 

Vo"°(W"     ™)ir    =   ^^(^a) + BmkrY^kTa), 

■Vo 

(w/fi — m)7T 

sin(o;/fl — m)ir 

(u/il — m)7r 
=   AmkTJ'm{kTb) + BmkTY^{kTb). 

(2.52) 

(2.53) 

Solving for Am and Z?m yields, 

^-KM + Wl^'f. (w/li — m)7T 

r, — K>  rT//,    .       T/ .,  ... sin(u;/fi — mW 

^m " KA 

KX, (u/Vl — m)7T 

(2.54) 

(2.55) 
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where Am is defined by Eq. (2.40) 

From Eq. (2.1), the general solution for the velocity potential for the driven wall 

toroid becomes 

\/     °°       1 
*   =   Tr   E   -^{[YL(kra) + Y^krb)]Jm(kTr) 

m=—oo 

- [J*,(M) + J*.(W)] y-(^)}^"nn_"nff
r^"^''-    <2-56> 

The corresponding pressure is 

P   = 
m=—oo 

—   E   ^~{[y^ra) + Y^krb)]Jm(krr) 
T       m=—co      m 

- K(M + <C(M)] ^(^r)}87(^n-?)%^-^).        (2.57) 
>    {(jj/il — mj7T 

Comparing this to the result in Eq. (2.12), it may be noted that the driving 

frequencies which produce infinite response are the resonant frequencies of the rigid 

wall toroid for the case of n = 0. Since Am is independent of the angular phase 

velocity, this resonance occurs at the characteristic frequencies regardless of the value 

of fi, even if an integral number of wavelengths does not fit in the toroid. This means 

that although the walls are moving (that is, they are not rigid) the behavior of the 

sound in the fluid will depend on the speed of sound in the infinite medium. Such 

a result in a tube with passive walls can only occur when the walls are rigid, which 

for the case of dense fluids (i.e., liquids), is often very difficult to obtain. Including 

losses in this solution will eliminate the unrealistic situation of an infinite amplitude. 

These losses will be dealt with in Section 2.4. 
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Consider the case of kra / ßmp such that the velocity potential remains finite. If 

the ratio of the angular frequency to the angular phase velocity is such that 

u/Sl = q (2.58) 

where q is an integer, then 

,        v^   sin(<7 — m)ir $oc z2 -r1—r- = <W 2-59 *—'      (q — m)ir 
m=—oo      v * ' 

This means only the angular wave number corresponding to m — q will contribute 

to the velocity potential; $ will represent a traveling wave. Such a wave will have 

an amplitude that is independent of angular position, and a phase difference between 

any two positions corresponds to the propagation time for the driven wave in the 

fluid. 

If u/Q « m, the dominant term in the sum in Eq. (2.56) is the one corresponding 

to that value of m, with small contributions from other angular wave numbers. In 

this case, the sound in the duct is no longer a pure traveling wave, but it is also not 

a pure standing wave. However, if the choice of u/ti is such that the contribution of 

sound due to m < 0 is the same as that for m > 0, then the result will be that of a 

standing wave inside the toroid. 

2.3.2    Theoretical Results for a Lossless Fluid 

Theoretical results for the pressure amplitude inside the driven wall toroid are shown 

in Figs. 2.7 and 2.8 for a toroid with dimensions given in Table 3.1. These calculations 



79 

include the range of m with values of -30 to 30. The values of angular phase velocity 

used are given in terms of the dimensionless quantity fi/Qo, where Q,0 is the angular 

phase velocity corresponding to the intrinsic speed of sound in the fluid. The ATO 

dependence, which is independent of Q, can be seen to drive the pressure amplitude 

to infinity at the characteristic frequencies of the rigid tube given by Eq. (2.12). (The 

fact that the peaks are not infinite in the graphs is a result of the finite frequency 

spacing missing the exact characteristic frequency values.) Varying $7/flo results in 

an asymmetry to the right for values of ü/ü0 > 1 (supersonic) and to the left for 

values of Q,/Q,0 < 1 (subsonic). 

The condition for a traveling wave given by Eq. (2.58) is demonstrated in Fig. 2.9 

where the sound pressure amplitude for four different values of angular position are 

plotted as a function of frequency for a specific value of Cl. The circles on the plot 

indicate intersections where the amplitude is the same for all four positions. Traveling 

waves occur at these frequencies. 
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Figure 2.7: Sound pressure amplitude inside a toroid as a function of frequency for 
various values of ft > 1 at 0 = 0. Values of m used range from -30 to 30. 
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Figure 2.8: Sound pressure amplitude inside a toroid as a function of frequency for 
various values of £1 < 1 at 0 = 0. Values of m used range from -30 to 30. 
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Figure 2.9: Theoretical values of the magnitude of the pressure at 6 = —3.30, —1.73, 
0.16, and 1.41 radians. The frequencies at the circled intersections are those for the 
case of fi/fio = 0.9 that yield traveling waves. 



83 

2.4    General Theory for the Toroid Including Losses 

In order to more realistically describe the propagation of sound in the toroid, it is 

necessary to include losses that will affect the sound amplitude. These losses can be 

treated by either obtaining the solution of the viscid fluid filled tube of Section 1.3 

modified for the case of a toroid, or as modifications to the case of the inviscid fluid 

filled toroid of Section 2.1. 

2.4.1    Solution for the Viscid and Thermally Conducting 

Fluid Filled Toroid 

Consider the solution of the toroidal waveguide filled with a viscid and thermal con- 

ducting fluid. The approach followed is that used in Section 1.3 for the geometry 

of a straight cylindrical tube adapted for the case of a tube with sound propagating 

azimuthally in the toroidal waveguide derived in Section 2.1. 

Solution of the Temperature Equation 

The fourth-order differential equation describing the temperature dependence is [from 

Eq. (1.47)], 

c2 T + . fuj2Pe      2a;2/2/ 
1" * v 24 + ~zft 

2iu2l2\ iP 
V'T - ( 1 - ^M ^V4T = 0. (2.60) 

Assume a solution to this equation of the form 

T = tiQi(r)eim9 + 6Q2(r)e''m«, (2.61) 
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where 

V2 [Qi,i(r)eim9] = A1)2g1>2(r)e'"lfl (2.62) 

where Ai and A2 are, from Eqs. (1.53) and (1.54) 

Ai 
u2 

« 7, c2 (2.63) 

and 

A, 
2« 

!~ "IT' 
e 

(2,64) 

which are the acoustic and thermal roots, respectively. 

Again consider a toroid with an an inside radius of a and an outside radius b as 

shown in Fig. 2.1. The propagation of sound will be required to be in the azimuthal 

direction with no z dependence. 

Equat ion (2.62) then simplifies to 

ä*fc •uM«*-] + ;£ [<?««<="-] + ~ [Q,*yr\ = M. QiAr)e 
imB 

(2.65) 

which becomes 

dQia    ldQi,2 
dr        r   dr 

+ (-All2 - £) Qh2. (2.66) 

The general solution to this equation is a linear combination of Bessel and Neumann 

functions (see Section 1.2), 

Q\a = MaJm (ry/- All2) + Clt2Ym (rV-Ai,2) . (2.67) 
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This equation, along with Eq. (2.61), is the solution for the temperature T. 

Solution of the Velocity Equation 

To find the solution for the velocity components, the approach found in Section 1.3.3 

will be used. Equations (1.58)—(1.60) apply to this procedure; assume a solution for 

the particular velocity, 

u" = V [GQi(r)eimö + C2Q2(r)e«mö] . (2.68) 

Substituting this and Eq. (2.61) into Eq. (1.60), yields 

0   =   V • { V [GQi(r)e'me + C2Q2(r)e'mö] } + iu [6Qi(r) + (2Q2(r)} eime 

+2f^ {6V2 [Qi(r)eim9] + 6V2 [Q2(r)e«'mö] } . (2.69) 

For this equation to always be true, 

im8 0   =   (1,2V2 [Q^iry^+iu^Q^e 

+ *6,2V
2 [QUr)eime] . (2.70) 

Solving for C1)2 using Eq. (2.62) gives 

Ci,2 = -6,2^(^,+^-) (2.71) 

which along with Eq. (2.68) is the general solution for the particular equation of the 

velocity. 
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To find the solution for u', once again consider Eq. (1.65), which is 

l2u 
iW + -y-V2u' = 0. (2.72) 

As in the similar derivation in Section 1.3.3, one must solve for the homogeneous 

components of velocity separately. First consider the radial component of the velocity, 

2 \dr2      r dr      r2 dB2 

2 V dr2      r dr       r2 

dr2      r dr 
"li     m2\ 

^™J' (2-73) 

whose solution is 

where 

v' = toQoeimB, (2.74) 

Qo = AoJmiry/^iJi2) + C0Ym(ry/2i/ll). (2.75) 

From Eq. (1.59) the relationship between v' and w' is 

_    1 drv'     1 dw' 
r dr       r 80 
v'      dv'      im   , 

=    - + -« w'. (2.76) r      or       r , ' 

Solving for w' in terms of v' yields, 

,      -if,       dv'\ 
m V dr 
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Combining the equations for the homogeneous and particular parts of the radial 

and azimuthal velocity yields, for the radial velocity, 

v = =   v' + v" 

= &«■•"-£ £[&*(£+£)*«" 
7'e2 ,   • \ dQi 

CoQo-J2^(-t + T. 
J=l 

2       XjJ   dr' 
JmO (2.78) 

and for the azimuthal velocity, 

w   =   w' + w" 

—i 

m 
d 

(0Qoeime + r—((0Q0eime) 
or v ' 

m 
(2.79) 

where Q0, Qt, and Q2 are defined by Eqs. (2.67) and (2.75). 

Application of the Driven Wall Boundary Condition 

The solutions for the coefficients in the equations above (there are a total of six to 

solve for) can be derived by the application of the appropriate boundary conditions. 

If one considers the case of the driven wall from Section 2.1.2 for the radial component 

and assumes similar boundary conditions for the axial velocity and the temperature 

for the case of the straight tube in Section 1.3.4, then 

W\r=a      =     W\r=b = 0, (2.80) 
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T\r=a   =   T|r=6 = 0, (2.81) 

v\r=a   =   K,/(ö)e-w, (2.82) 

v\r=b   =   -V0f(8)e-iwt. (2.83) 

Solving for the coefficients in Eqs. (2.61), (2.78), and (2.79) using the boundary 

conditions given above, the solution for sound propagation in a viscous and thermally 

conducting fluid filled toroidal waveguide with driven walls can be derived. 

2.4.2    Attenuation 

The solution above requires the solution of a 6 x 6 matrix equation which, for the 

present purpose, is not practical to solve. Therefore, it is advantageous to consider 

an alternative approach to the problem. It is also important to note that the configu- 

ration used for making experimental measurements consists of a compliant wall tube 

with individual driving elements (see Chapter 3). This is one source of attenuation 

not considered by the theory of the previous section. 

Another approach that will be presented is that of including losses in the toroid 

by considering the wave number in the fluid to be complex. Once the value of this 

wave number is determined, Eq. (2.57) can be used to solve for the pressure in the 

toroid. 

The complex wave number can be written as 

k = k - ia, (2.84) 

where a is the absorption coefficient and k = u/c.  The sources of attenuation are 
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the various mechanisms that take energy out of the system. These effects combine so 

that the total absorption coefficient can be considered as the sum of the absorption 

coefficients of each individual loss mechanism calculated independently so that 

a = Y^ai. (2.85) 
i 

In practice, this will be true as long as a/k <C 1 [42]. 

The Tube Effect 

Because of imposed boundary conditions due to the walls of the tube, the effects 

of viscosity and thermal conductivity on propagating sound are significant (see Sec- 

tion 1.3). For wide rigid tubes, that is a tube where the skin depth occupies only a 

small fraction of the cross-sectional area, the attenuation is given by [38] 

0-3/a ( "I* 
1 + '/^-" 

§ (2.86) 

where S is the length of the perimeter and A is the cross-sectional area. The quantity 

fiCp/K is called the Prandtl number. For air at 27°C, and a pressure of 1 atmosphere, 

the coefficient of absorption is 

aw = 2.87 x 1(T5—. (2.87) 
a 
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Classical Absorption and Absorption by Relaxation Processes 

The attenuation of sound in the bulk medium due to viscous and thermal effects, as 

well as molecular relaxation, is insignificant compared to aw at the frequencies of 

interest. For this reason these will be ignored. 

Compliant Walls 

For the case of sound propagating in a tube with compliant or elastic walls, there is 

an additional contribution to the overall attenuation due to the motion of the wall. 

The expression for such attenuation in terms of the impedance of the wall is given 

by [15] 

acw = Re(^) A (2.88) 

The quantity Z will be related to the elastic properties of the wall as a function of 

frequency. 

Consider a length of cylindrical tube L with radius a and thickness T shown in 

Fig. (2.10). The sum of the forces exerted on the tube wall are equal to the time rate 

of change of the momentum of the wall, i.e. 

dv 
P + Pe=^-^- (2.89) 

where p is the sound pressure pushing the wall radially outward, and pe is an effective 

pressure caused by the elastic force pulling the wall inward, to be obtained below. 

Consider a rectangular piece of elastic material of length x and cross-sectional 

area A which is stretched by an amount Ax under the influence of a tensile force Fe. 
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Figure 2.10: Elastic tube considered in derivation of absorption coefficient. The figure 
on the left is the open section of tube shown on the right. Vectors are shown indicating 
the direction of the elastic force (Fe) and the force due to the pressure (Fp) are shown. 
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Then from Hooke's law, 

Fe = -kAx. (2.90) 

The force constant k can be expressed in terms of Young's modulus, which is the 

ratio of the stress to the strain, 
F. x 

Y = -T1T- (2-91) A Ax v      ' 

The potential energy stored in the elastic material when it is stretched is given by 

U = -kAx2. (2.92) 

Now bend the material into a circle so that it forms a section of tube. The unstretched 

length is now the circumference of the tube, given by 

x = 2™', (2.93) 

and the elongation of the material is now an increase in circumference, given by 

Ax = 27rAr. (2.94) 

If this elongation is due an effective surface pressure pe, then this force is 

dU      1 
Pe     = 

d(Ar) 2xaL 
d     flTLY 

47r2Ar2 

d{Ar) \2 2ira' ) 2iraL 
TY A 

Ar. (2.95) 
aa 
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Substituting this into Eq. (2.89) yields 

YTAr 
P-—— = PviT{-iuv) (2.96) 

aa' 

where an exp(—iu>t) dependence on the velocity has been assumed. • Such a time 

dependence also yields Ar = iv/u. Solving for Z yields, 

Z = l = i(XL_UjpwTy (2.97) 
v        \ aa'uj ) 

Inspection of Eq. (2.88) shows that in order to determine the attenuation due to 

the compliant walls, it is necessary to have an expression for the real part of Z. The 

quantity Y can be considered to be complex, so that 

Z = £ = Re(Z) + i fRe(y)r -UPWT) . (2.98) 
v \    aa'u J 

This can be determined using the imaginary part just derived along with infor- 

mation from experimental data. If Z = Re(Z) + i Im(Z), then Eq. (2.88) becomes 

pocRe(Z)        1 poclmjZ)        1 

Re(Z)2 + Im(Z)2 a       Re(Z)2 + Im(Z)2 a 

The imaginary term will dominate Z for all frequencies, except for the resonant 

frequency. For this case, the impedance can be considered to be mostly real such that 

Im(Z) « 0. At this frequency, setting the imaginary term to zero, 
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where a£w iS the value of the attenuation measured at the resonant frequency. Using 

this, Z can now be written as 

z = -^ + i(*S£lL- ufJ). (HOD 
aacw        \    aau} / 

Substituting this into Eq. (2.102) yields 

acw = acw 
i + ( P?L\2 ("<* 

Po 

-i 

(2.102) 

where 

w0 = y/Re{Y)/aa'pw, (2.103) 

which is determined by setting Z = 0 in Eq. (2.98). 

2.5     Chapter Summary 

In this chapter, the solutions for sound propagating in lossless fluid filled toroidal 

waveguides has been presented for both rigid and driven wall cases. For the case of 

driven walls, two types of boundary conditions have been considered: (1) all rigid 

walls except for a single driving element, and (2) a sinusoidal wave propagating along 

9, where -K < 9 < w, with a given wave number and angular phase velocity. For 

both cases, the inner and outer walls contained the driving elements and the top and 

bottom walls were held rigid. Two methods for including losses in the system have 

also been presented. 

For the case of the rigid wall toroidal waveguide, solutions exist only for certain 
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frequencies. In the narrow tube limit, these frequencies correspond to those producing 

an integral number of wavelengths along the circumference, that is the curvature of 

the waveguide has no effect on the nature of the solution. 

For the case of the driven wall toroid, the resulting sound pressure in the toroid 

driven at a single point is a standing wave of infinite amplitude at the characteristic 

frequencies of the rigid wall tube. On the other hand, driving the entire wall at a 

single phase velocity results in (1) infinite peaks in the pressure when the frequency 

corresponds to a characteristic frequency of the rigid wall toroid (the circumference 

corresponds to a whole number of wavelengths for the bulk speed of sound in the 

fluid), and (2) traveling waves when the ratio of the phase velocity and the driving 

frequency is an integer value (the circumference corresponds to a whole number of 

wavelengths in the wall). 

Two methods have been considered to include losses in the system. The first gives 

six boundary value equations from which the velocity components can be solved. 

These equations give the particle velocity and temperature in a conducting, viscous 

medium that are similar to those derived in Section 1.3, except with the geometry 

of a toroid. The second method derives the frequency dependence of the absorption 

due to a yielding wall based on an empirical measurement, and adds it to the tube 

absorption calculated from the traditional equation for a wide tube. 



Chapter 3 

Experimental Results 

Experimental verification of theory derived in Chapter 2 is presented in this chapter. 

The following experiments were performed: 

• velocity amplitude and displacement of the driven wall of a toroid, 

• attenuation in a toroid with compliant walls (from Section 2.4.2), 

• toroid with a delta function driver (from Section 2.2), 

• toroid with driven walls (from Section 2.3), 

• traveling waves in a driven wall toroid (from Section 2.3). 

First, the construction of a driven wall torus as well as the operation of the digital 

circuit used to drive it will be discussed. 

96 
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3.1     Experimental Devices 

3.1.1    The Torus with Driven Walls (The Acoustitron) 

Table 3.1: Dimensions and configuration of the acoustitron. 

torus Ro (cm) 19.40 
a (cm) 1.27 
number 32 

driving elements width (cm) 1.27 
thickness (cm) 0.32 
O.D. (cm) 3.81 

In order to verify the theoretical results for sound propagation in a toroidal wave- 

guide with driven walls, a device was built that has been called an acoustitron. It 

consists of a length of Tygon™ ! with the ends connected to form a torus. Mount- 

ed around the outside are thirty-two evenly spaced piezoceramic rings as shown in 

Fig. 3.1. The dimensions of the acoustitron are given in Table 3.1. The driving el- 

ements have electrodes on the inner and outer surfaces and are poled in the radial 

direction. In the presence of a varying electric field, the change in thickness is pri- 

marily in the radial direction. The piezoelectric properties of the driving elements 

used are given in Table 3.2. Each element is glued to the torus in order to maximize 

the coupling between the driver and the tube wall. 

A second torus made of soft PVC was also constructed, but with only a single 

movable driving element. This tube was used in measurements described in Sections 

3.3.2 and 3.3.5 and will be referred to as the PVC torus. The dimensions of this tube 

i "TYGON" is a registered trademark of Norton Company. 
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TOP VIEW 

SIDE VIEW (without elements) 

Figure 3.1: The acoustitron. 
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Table 3.2: Piezoelectric properties of EDO Corporation EC-70 piezoelectric driving 
element, equivalent to DOD-STD-1376A(SH) Type V (Lead Zirconate Titanate). 
Note that the values given are nominal; actual production values vary ±10%. (Source: 
EDO Corporation, Acoustics Division, Salt Lake City, Utah.) 

Piezoelectric Properties Values 
density (Kg m-3) 7.45 xlO3 

Young's modulus (N m~2) 6.3 xlO10 

dielectric constant at 1 kHz 2750 
d3i (m V-1) -230xl0"12 

d33 (m V"1) 490 xlO"12 

frequency constant (kHz m) 1.727 

are the same as those of the acoustitron. 

Sound pressure measurements were made using a Briiel & Kjaer eighth-inch micro- 

phone (type 4138) inserted through an airtight opening in the wall of the tube. The 

protective grille was carefully removed and the microphone was positioned flush with 

the tube wall so that it was perpendicular to the z axis in the z plane bisecting the 

torus. A Hewlett Packard 35665A Signal Analyzer was configured to record the sound 

pressure level (SPL) measured with the microphone. 

3.1.2    The Acoustitron Driving Circuit 

In order to drive the acoustitron, it was necessary to design and build a digital delay 

circuit capable of driving thirty-two elements with a specific time delay between 

outputs. The circuit built consisted of a single input and thirty-two analog outputs. 

A diagram outlining the basic components of the circuit is shown in Fig. 3.2. 

The input signal could be produced by either an external analog source, or by 
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I Analog | 
Input 

8-Bit A/D Data Register 8-Bit D/A 

High Speed Memory 
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Figure 3.2: Diagram of the digital delay circuit used to drive the acoustitron. The 
user can control the time delay between successive outputs, as well as which output 
is the first in the output sequence. In general, there will be a discontinuity between 
the first and last outputs of the circuit which will fix the position of the microphone 
to a specific position in the acoustitron. By allowing the user to vary the location of 
the "break" in the driving wall, the microphone can be "moved" around the tube to 
any of thirty-two "positions". 



101 

an internal preprogrammed waveform stored in memory. For the case of external 

input, the analog signal was received through an eight-bit analog-to-digital converter 

and loaded into the high speed memory of a Texas Instruments TMS320C30 Digital 

Signal Processor (DSP) which was located inside an IBM-PC compatible computer. 

The method of operation of the circuit is as follows: as data (the instantaneous 

driving level) is loaded into memory, the most recent data is placed at the top of the 

memory stack and the data at the bottom of the stack is discarded so that with each 

successive input, the digital data is pushed through the stack. During each sample, 

data from thirty-two different equally spaced positions in the stack are pulled out and 

loaded into thirty-two data registers. For a fixed sample time, the "distance" between 

these positions corresponds to a specific time delay from one channel to the next. The 

values in the registers are then sent in parallel to individual amplifiers, which in turn 

drive the piezoceramic elements. The result is thirty-two "function generators" with 

identical waveforms, but shifted in time. (See Appendix B for a detailed schematic 

of the digital delay circuit.) 

Note that this method is limited to time delays that are an integral number of 

the sample time. For example, if the sample rate of the circuit is 33.3 kHz, then 

the allowed time delays will be 30n microseconds, where n is an integer. In order to 

avoid this limitation, non-integer values of n are used by interpolating between known 

integer values of n. For example, if a time delay of 45 microseconds is desired, and 

the value in memory for n = 1 is 1.5 and for n = 2 is 2.5, then the value sent to the 

output register will be 2.0. This way, there is no restriction on the time delay values 

that can be used. For a sinusoidal driving signal, if the signal period is long compared 

to the desired delay time, the interpolated value will be a good approximation. 
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Software consisted of a PC-side program that allowed the parameters to be set 

in the DSP, and a DSP-side program which controlled the operation of the DSP. A 

flowchart of these programs is shown in Fig. 3.3 
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Figure 3.3: Flowchart of computer programs used to operate the DSP. 
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3.2     Comparing Geometries of Theory and Exper- 

iment 

To this point, only the two-dimensional solution for a toroid with driven walls has 

been considered, i.e., a toroid with a rectangular cross-section and no z dependence. 

Experimentally, it is easier to construct a toroid with a circular cross-section with 

driving rings, than to build one with a rectangular cross-section. In order to compare 

theory and experiment, some statements need to be made about these two geometries. 

3.2.1    Tube Geometry 

Figure 3.4: The toroidal coordinate system. 

It is desirable to derive the solution for sound propagation in a toroid with a circular 

cross-section, i.e., the toroidal coordinate system (Fig. 3.4). The problem encountered 

is that the wave equation written in such a system, which is given by Cummings-[36] 
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as 

d2p     /l     cos<A dp      1 d2p     sm<f>dp     1 d2p      1 d2p _ . 

dr2     \r        I   ) dr     r2 d<£2       rl   d<f>     I2 862     c2 dt2       ' l ' ' 

is not a separable equation, where / = R — r cos <f>. In order to compare the theoretical 

case of a rectangular cross-section to the experimental results obtained from a circular 

cross-section, it is therefore necessary to make approximations. It has been shown 

in Section 2.1.1 that for wavelengths long compared to the width of the toroid, the 

shape of the bend can be ignored. Therefore, the toroid can be thought of as an 

infinitely long tube with a driven wall that is periodic along the center axis. In 

a viscous and conducting fluid filled tube with a given cross-sectional shape, the 

propagation characteristics of sound can be expressed in terms of an average over the 

cross-sectional area, defined by [43,44] 

F{\) =<<j>>=^-l <j>(s)dA. (3.2) 

Given such a function, the density is given by 

/>(«) = po/F(X). (3.3) 

The characteristic pore radius is given as twice the transverse pore area divided by 

the pore perimeter. For a rectangular cross-section of height a and width 6, the 

characteristic pore radius is ab/(a + b). For a circular cross-section of radius r, the 

characteristic pore radius is r. If a = b = 2r for the rectangular cross-section, then 

both geometries will have the same value for the characteristic pore radius. Therefore, 

the propagation characteristics of sound in narrow toroids, will be the same for these 
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two geometries if the widths and heights are identical. 

In his paper on sound propagation in curved tubes, Cummings [36] compared the 

experimental sound pressure measured across a circular duct to the theoretical case 

of a rectangular duct. (The range of wave numbers considered were those comparable 

to the radius of curvature of the tube.) He found that the pressure distribution from 

inside to outside radius for both cases were almost identical when the width of the 

square duct was set equal to the diameter of the circular duct. For the pressure 

distribution from top to bottom, he found some variation in the results. From this, 

as well as impedance measurements, he proposed that an alternative to the duct of 

circular cross-section is a rectangular duct with a width equal to the diameter of 

the circular cross-section, and a height such that the cross-sectional areas of the two 

shapes were identical. 

In both of these cases, square and circular ducts are considered equivalent when 

the widths are the same. Therefore a comparison of the theory for sound propagation 

in a rectangular duct to experiments performed in circular ducts can be made if the 

widths of the ducts are equal. 

3.2.2    Driving Geometry 

The analysis of the toroid in Chapter 2 is restricted to two-dimensions, as opposed 

to three-dimensions, in order to simplify the problem. Driving both top and bottom 

walls, as well as the inside and outside walls, adds to the complexity of the problem 

without gaining any new information. 

Another advantage of the two-dimensional approach is the similarity to the torus 
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used in experiments. For the case of the driven toroid discussed in Section 2.1.2, there 

is only one independent coordinate across the cross-section because of symmetry in 

the z direction. For the experimental case, driving rings are used to produce motion 

in the wall. This motion is symmetric in terms of <f> (Fig. 3.4), so that across the 

cross-section there will be only one independent coordinate. 

Analysis of measurements shown in Sections 3.3.3 and 3.3.4 justify this approxi- 

mation. 

3.3    Experiments 

3.3.1     Velocity and Displacement of the Tube Walls 

In order to calculate the theoretical pressure amplitude of sound propagating in the 

acoustitron [Eq. (2.57)], it was necessary to know the velocity amplitude of the driven 

wall. For this reason, velocity amplitude measurements were made at various points 

on the acoustitron with of a DISA 55X Laser Doppler Vibrometer (LDV). 

An LDV is a device that permits non-contact measurements of the component 

of velocity in the direction of a laser beam originating in a He-Ne laser. The initial 

beam is split into two beams of approximately the same intensity, where one beam is 

used as a reference and the other beam is focused on the vibrating object. The light 

reflected from the moving surface is collimated and sent to the detector. This beam 

is then recombined with the reference beam in opto-electronic circuitry that produces 

an electrical signal proportional to the surface velocity. This signal is multiplied by a 

given calibration constant to yield the absolute surface velocity component along the 
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laser beam. 

The signal analyzer operating in swept sine mode was used to drive a single element 

of the acoustitron. The LDV was then used to measure the velocity amplitude of the 

driving element as well as the tube wall at three different positions as indicated in 

Fig. 3.5. 

B D 

Figure 3.5: Location of four positions from which velocity amplitude measurements 
were taken using the LDV. Position A was the driving element. 

The resulting velocity measurements are shown in Fig. 3.6. 

At frequencies much less than modal frequencies of the piezoceramic element, the 

expected displacement amplitude D is given by its static value D3, i.e. [45] 

D, = d33V, (3.4) 

where d33 is the ratio of strain and applied field in the radial direction given in Table 

3.2, and V is the amplitude of the driving voltage. Thus, for a constant driving 

voltage, no frequency dependence in D is expected. Taking the velocity and dividing 



109 

3E-5 

T3 
d 
o 
Ü 

< n 
u 
<u 
*J 

B 

o 
o 

> 

2E-5 

>,     1E-5 

OEO - 

1000        1500        2000 

frequency (Hz) 

2500        3000 

Figure 3.6: Velocity amplitude of driver and wall measured at four different positions. 
Data was taken with a 1 volt driving signal. 
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by the driving frequency w, yields the displacement D which is shown in Fig. 3.7. The 

displacement calculated from Eq. (3.4) is shown in Fig. 3.7 along with the measured 

data taken with the LDV. Inspection of this figure shows that there is a resonance at 

low frequencies in the displacement of the driving element, as well as the tube wall. 

This resonance is assumed to be a mechanical resonance associated with the structure 

of the acoustitron. When considering the displacement amplitude of the tube, the 

fairly flat response observed at most frequencies of interest will be considered as 

representative of the motion. (This is done to simplify the comparison to theory.) 

Because of this approximation, there will be some discrepancies in the theory for the 

very lowest frequencies. 

Approximating all but the lower frequencies in Fig. 3.7 with D = 1.0 x 10"9 meters 

per volt, one can determine a value the velocity amplitude VQ for use Eq. (2.57) where, 

V0 = uDV. (3.5) 

This value will be a good representation of D at most frequencies in the range con- 

sidered. 
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Figure 3.7: Displacement of driver and wall measured at four different positions. The 
theoretical displacement of the driving element based on piezoelectric properties is 
also shown. Data was taken with a 1 volt driving signal. 



112 

3.3.2    Attenuation in the Acoustitron 

In order to determine the value of aC\v given by Eq. (2.102), it was necessary to make 

measurements of the attenuation in the acoustitron. The acoustitron was driven so 

as to generate a traveling wave with a particular frequency. All elements of the 

acoustitron were then turned off simultaneously. The decay of the traveling wave 

with time was then observed and recorded with a digital oscilloscope. In order to 

verify the explanation of the observed resonance (see Section 2.4.2), measurements 

were also made on the PVC torus by recording the decay of standing waves produced 

by the single driving element. (This measurement was made this way because the 

construction of a second acoustitron was not feasible at the time.) 

First consider the case of the acoustitron. In order to determine the absorption 

of sound, the natural logarithm of the sound pressure amplitude was plotted versus 

time. The absorption coefficient for the driving frequency was then found by 

a=V' (3-6) 

where s was the slope of the line from the semi-log plot, and c was the speed of sound. 

Measurements were made at the characteristic frequencies of the system setting ti = 

too, where $7 is the angular phase velocity from Chapter 2. The driving signal used was 

generated by the DSP, which was programmed to deactivate all thirty-two elements 

simultaneously. (An external source could not be used since the thirty-two elements 

would have been deactivated sequentially due to the nature of the driving circuit.) 

For the case of the PVC torus, the decay of the sound pressure in time consisted 

of a number of cycles of equal amplitude, with each successive set "stepped" down 
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in amplitude (see Fig. 3.8). The absorption coefficient for the driving frequency was 

then determined by 

a = ,n(gl, (3.7) 

where A\ and A2 were the amplitudes of adjacent steps with A<i > A\, and C was 

the circumference corresponding to RQ in Fig. 3.1. For this case, a function generator 

was used to generate the driving signal. 

The results, as well as theory from Eq. (2.102), are plotted in Figs. 3.9 and 3.10. 

In order to compare the results of these two types of measurements, some standing 

wave values were measured driving a single element of the acoustitron. These are also 

shown in Fig. 3.9 and are similar to those measured from traveling waves. 

The shift in resonance frequency between the PVC and Tygon^ tubes can be 

attributed to a difference in Young's modulus in the two materials. The value of 

Y for the two materials is calculated using Eq. (2.103) along with measured values 

given in Table 3.3. The results are also give in Table 3.3, along with values of Y 

obtained by stretching strips of the material (Hooke's law experiment) and a value 

for Tygon® given by the manufacturer. 

The dependence of the tube wall motion on the sound pressure amplitude inside 

the acoustitron can also be verified experimentally. In Fig. 3.11 are plotted the 

measured displacements of a single driving element in the acoustitron and a location 

on the tube wall between two elements. The frequencies are those that produce 

traveling waves in the acoustitron for ti = ti0 (indicated by the empty markers), as 

well as non-traveling waves (indicated by the solid markers). Also shown are the 

microphone voltage levels measured inside the device as a function of these same 
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(a) 

(b) 

time 

Figure 3.8: Examples of decay measured for the case of (a) a traveling wave in the 
acoustitron and (b) a standing wave produced by a single driving element. For the s- 
tanding wave case, the driving frequency was twelve times the fundamental frequency 
and the microphone was located approximately opposite the driving element. There- 
fore the number of cycles in the first step is about six, and the remainder of the steps 
is exactly twelve. The driving frequency used in both cases was about 3900 Hz. 
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Figure 3.9: Measured values of absorption coefficient in the acoustitron along with 
theoretical curves from Eq. (2.102) based on the measured value of absorption at the 
resonance frequency. The frequencies plotted as circles correspond to traveling waves 
inside the acoustitron. Standing wave values are plotted as squares. 
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Figure 3.10: Measured values of absorption coefficient in the PVC torus along with 
theoretical curves from Eq. (2.102) based on the measured value of absorption at the 
resonance frequency. The frequencies plotted as circles correspond to characteristic 
frequencies. 
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Table 3.3: Experimentally determined parameters from measurements made on both 
the acoustitron (Tygon®) and PVC torus, along with manufacturers information. 
The value for attenuation measured at the resonance frequency given in the table 
excludes the tube effect. 

Parameter acoustitron (Tygon®) PVC torus 

experiment 
/o (Hz) 
a£w (Np m"1) 
pw (kg m-3) 
Y (xlO6 Nm"2) 

1683.1 
0.67 

3.32 ± 0.20 

2885.3 
0.65 
1185 

34.3 ± 3.3 
calculated [Eq. (2.103)] Y (xlO6 Nm-2) 23.9 ± 7.89 70.6 ± 23.3 

manufacturer Y (xlO6 Nm"2) 
pw (kg m"3) 

5.37 ±0.14 
1180 — 

frequencies. Inspection of this figure shows that the motion of the tube wall does 

follow the sound pressure amplitude inside the acoustitron for a relatively constant 

driver displacement. The resonance frequency seen in Fig. 3.9 also appears as a 

resonance in the displacement of the tube wall. 



118 

CO u 
tu 

a 
9) 

03 
O 

"a, 

5^ u 
Si 

u 
(0 

1400      1600 1800      2000      2200 

frequency (Hz) 
2400      2600 

Figure 3.11: Displacement of a driving element (square markers) and the tube wall 
(circular markers) while driving the acoustitron at traveling wave frequencies. The 
measured microphone voltage (diamond markers) is also shown. The resonance in 
the motion of the tube wall is indicated by the arrow. 
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3.3.3    Pressure Distribution in the Acoustitron with a Delta 

Function Driver 

To verify Eq. (2.42), the PVC torus was used. By moving the single driving element 

around the circumference of the tube while making measurements with a fixed micro- 

phone inside the tube, the sound pressure level could be mapped out as a function of 

angular position. 

The element was driven with a function generator set to the desired driving fre- 

quency and the microphone output was monitored using a digital oscilloscope set to 

average the incoming data. Measurements were made at intervals of 10° along the 

entire circumference of the torus. Since the pressure amplitude in the tube was sym- 

metric about the driving element, corresponding data from both sides were averaged 

together to form a pressure map for the range — 7r < 9 = 0. Two different driving 

frequencies were used corresponding to the third and fourth characteristic frequency. 

In order to make a qualitative comparison, theoretical data was normalized to fit a 

single experimental data point. The measured and predicted responses of the system 

as a function of position are shown in Figs. 3.12 and 3.13. 
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Figure 3.12: Normalized microphone voltage levels for driver element positions rang- 
ing from -ir < (f> < 0; the normalized data point is indicated by the square marker. 
The solid curve is that given by Eq. (2.45). The microphone was located at <f> - 0, 
and data points were spaced in increments of 10°. The driving frequency was 841 5 
Hz. 
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Figure 3.13: Normalized microphone voltage levels for driver element positions rang- 
ing from —x < <f> < 0; the normalized data point is indicated by the square marker. 
The solid curve is that given by Eq. (2.45). The microphone was located at (f> = 0, 
and data points were spaced in increments of 10°. The driving frequency was 1122.0 
Hz. 
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3.3.4    Sound Pressure Measurements Inside the Acoustitron 

Measurements of the pressure amplitude as a function of frequency and Q were made 

with the acoustitron. The signal analyzer operating in swept sine mode was used to 

record the output of the microphone. These measurements are shown in Figs. 3.14 

and 3.15. The SPL was measured with a calibrated microphone. (The sweep rate was 

slow enough to allow the system to reach a steady state pressure at each frequency.) 

The driving voltage amplitude was 16.72 volts rms. For all these measurements, the 

microphone was located at 9 = 0 

As pointed out in the theory, the peaks in the response of the acoustitron cor- 

respond to the characteristic frequencies of a rigid wall toroid with identical dimen- 

sions. From the frequency positions of the peaks and the known circumference of 

the acoustitron, the intrinsic speed of sound in the fluid can be determined using 

Eqs. (2.9) and (2.12). Comparison of Figs. 3.14 and 3.15 to Figs. 2.7 and 2.8 shows 

that the theory correctly predicts the relative behavior of the sound pressure for the 

various values of frequency and fi, specifically the asymmetric shifting to the left and 

right of the peak for fi < f)0 and 0, > ti0 respectively. The experimental data will 

now be examined more closely to determine how well it matches the theory. 

The theoretical equation for the pressure is given by Eq. (2.57) for the case of 

an inviscid fluid, where V0 is the velocity amplitude of the wall. The measured 

displacement amplitude at points along the wall (Fig. 3.7) show a definite frequency 

dependence of the amplitude of the motion, especially at low frequencies. It is also 

apparent that the motion of the wall varies with the distance from the driving element. 

For these reasons, it is advantageous to eliminate V0 from the experimental data in 
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Figure 3.14: Measured values of the sound pressure levels inside the acoustitron for 
values of Cl/Ü0 > 1.0. The driving voltage was 16.72 volts rms. 
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Figure 3.15: Measured values of the sound pressure levels inside the acoustitron for 
values of tt/Q0 < 1.0. The driving voltage was 16.72 volts rms. 
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order to facilitate a comparison to theory. Therefore, the measured and predicted 

values of pressure were normalized by the pressure for the case of Q, = J7o, that is 

P(Q.)/P(ti0), where theory was normalized by theory and experiment was normalized 

by experiment. The choice to normalize by the pressure for the case of Ü = Q0 was 

arbitrary. In Figs. 3.16-3.25, the normalized pressure amplitude for both experimental 

and theoretical values are plotted as a function of frequency for values of f2 ranging 

from 0.75 to 1.25. The theoretical pressures shown are for the case of an inviscid fluid 

with an identical frequency resolution as that of the experimental data. The effect of 

the lossless fluid produces peaks that are for the most part, taller than the measured 

data for a tube with losses. The exception to this is the peak corresponding to the 

first harmonic of the fundamental frequency. From the measured velocity amplitude 

of the tube shown in Fig. 3.6, it is evident that a resonance in the driving system 

exists around the frequency in question. Since there is a mechanical resonance, the 

theoretical curves, which assume constant amplitude boundary conditions, will not 

show this behavior. 

To see how well the theory predicts the SPL measured in the acoustitron, the 

theoretical pressure for a lossless fluid filled tube [Eq. (2.57)] will be used and atten- 

uation will be included by writing the pressure in terms of a complex wave number k 

and speed of sound c where 

k = ujc, (3.8) 

and k is given by Eq. (2.84), and the absorption a is given by Eqs. (2.85), (2.87), 

and (2.102). The value of c*cw can De determined from the measured values given in 

Table 3.3. A value for VQ is obtained from Eq. (3.5) with V = 16.72 volts rms. 
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Figure 3.16: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for tt/ft0 = 
0.75. The normalization pressure is that for fi = Jl0- 
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Figure 3.17: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for fi/J7o = 
0.80. The normalization pressure is that for 0 = J7Q- 
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Figure 3.18: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for fl/fi0 = 
0.85. The normalization pressure is that for 17 = O0- 
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Figure 3.19: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for f)/0o = 
0.90. The normalization pressure is that for 1) = Q,Q. 
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Figure 3.20: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for tt/Q0 = 
0.95. The normalization pressure is that for Ü = D,0. 
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Figure 3.21: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for fi/fio = 
1.05. The normalization pressure is that for 0 = fio- 
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Figure 3.22: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for ft/00 = 
1.10. The normalization pressure is that for ti = ü0. 
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Figure 3.23: Comparison of theoretical and experimental values of the normalized 
sound pressure amplitude in the acoustitron as a function of frequency for fi/fio = 
1.15. The normalization pressure is that for 0 = ti0. 
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Figure 3.24: Comparison of theoretical and experimental values of the normalized 
pressure amplitude as a function of frequency for ü/ü0 = 1.20. The normalization 
pressure is that for ti = ti0. 
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Figure 3.25: Comparison of theoretical and experimental values of the normalized 
pressure amplitude as a function of frequency for fi/flo — 1-25. The normalization 
pressure is that for 0 = J7Q. 
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The resulting SPLs as functions of frequency for the values of ft already considered 

are shown in Figs. 3.26-3.36. For ft > ft0, the predicted SPL matches the measured 

SPL quite well for all frequencies.  For ft < ft0, theoretical and experimental data 

match well for low frequencies, but deviations are apparent at higher frequencies; the 

lower the ft, the more the deviation.  The reason for this is as follows.  Recall that 

the boundary condition used in the theoretical case was that of a continuously driven 

wall where the wave number in the fluid was equal to the wave number in the wall. In 

the experimental tube, however, driving elements are spaced a finite distance apart. 

As ft decreases, the speed of the wave in the wall decreases, and for a fixed frequency, 

the wavelength decreases. This means that there are fewer elements per wavelength 

so that the wall appears more like a series of point drivers separated by passive walls 

instead of a continuously driven wall derived in theory.  If the minimum number of 

elements that could represent a sine wave is considered, it would be four elements per 

wavelength.   Therefore, frequencies that correspond to three or fewer elements per 

wavelength in the acoustitron, would not be well represented by theory. In Table 3.4, 

frequencies at which there are only three elements per wavelength corresponding to 

the angular phase velocity of the driven wall are given. Comparing these values to the 

results shown in Figs. 3.26-3.31, it can be seen that the experimental measurements 

do seem to deviate more above these frequencies. 
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Figure 3.26: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for fi/00 = 0.75. 
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Figure 3.27: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for Q/tt0 = 0.80. 
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Figure 3.28: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for 0/0o = 0.85. 
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Figure 3.29: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for ü/ü0 = 0.90. 
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Figure 3.30: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for fi/Oo = 0.95. 
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Figure 3.31: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for tt/ft0 = 1-00. 
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Figure 3.32: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for fi/Oo = 1-05. 
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Figure 3.33: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for fi/00 = 1.10. 
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Figure 3.34: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for fl/füo = 1.15. 
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Figure 3.35: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for 0/00 = 1-20. 
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Figure 3.36: Comparison of predicted to measured values of the sound pressure level 
inside the acoustitron for Q/fio = 1-25. 
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Table 3.4: Frequencies at which there are only three elements per wavelength in the 
acoustitron for a given value of ü/ÜQ. 

Angular Phase Velocity Frequency 
0.75 2240 Hz 
0.80 2390 Hz 
0.85 2540 Hz 
0.90 2690 Hz 
0.95 2840 Hz 
1.00 2990 Hz 

3.3.5    Traveling Waves in the Acoustitron 

The theoretical solution for the sound pressure in a toroid with driven walls shows 

that if the ratio of the angular phase velocity fi and the angular frequency u of the 

driven wall is an integer, the resulting sound wave will be a traveling wave. This 

is equivalent to saying that there are an integral number of wavelengths along the 

circumference of the toroid. In a traveling wave, (1) the amplitude of the sound wave 

is independent of position and (2) the phase shift measured between two locations 

in the tube corresponds to the propagation time between them. The requirement for 

such a situation is given by Eq. (2.58) which says that u/il must be an integer. 

There are two straightforward methods for experimentally finding combinations 

of u and ft that yield traveling waves in the acoustitron. One method is to record the 

complex pressure at two different positions in the acoustitron at a given frequency as 

a function of angular phase velocity. The traveling waves can then be determined by 

looking for values of fi/J70 that produce identical amplitudes and a phase difference 

equal to the propagation time for the speed of the wave in the wall. An example of 

such a measurement is shown in Fig. 3.37 which consists of the theoretical complex 
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pressure at two different positions inside the acoustitron. These plots were generated 

using Eq. (2.57). 

A second method of detecting traveling waves is to record the frequency depen- 

dence of the magnitude of the pressure at different positions in the acoustitron for a 

given angular phase velocity. The traveling waves can then be determined by looking 

for values of frequency that produce identical amplitudes at all positions. As shown 

in Fig. 3.37, it is possible to match pressure amplitudes at two different positions, 

yet not have a traveling wave. By taking measurements at unevenly spaced angular 

positions, the need to check for the proper phase is eliminated. An example of such 

a measurement has already been shown in Fig. 2.9, which consists of the theoretical 

magnitude of the pressure at four different positions inside the acoustitron. 

Both of these methods are suitable for making the desired measurements. In prac- 

tice, however, it is easier to sweep frequencies than to sweep angular phase velocities. 

The signal analyzer operating in swept sine mode was again used to record the 

output of the microphone as a function of frequency. In order to make measurements 

at different positions inside the acoustitron, the element designated as the first in the 

output sequence was varied, effectively "moving" the microphone around the tube. 

An example of the sound pressure in the acoustitron for various microphone positions 

is shown in Fig. 3.38. 

Experimentally determined combinations of ft and w that produced traveling wave 

in the acoustitron are shown in Fig. 3.39. (Error bars are about the size of the symbols 

used in the plot.) Theoretical values determined from ft = wn, where n is an integer, 

are indicated by the solid lines. 
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and the phase difference A<ptrvi of the pressure at both positions as functions of an- 
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Figure 3.38: Experimental values of the magnitude of the pressure at four differ- 
ent positions inside the acoustitron. The frequencies that yield traveling waves are 
indicated by circles, where Q/ti0 = 0.9. 
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Figure 3.39: Comparison of theoretical (solid lines) and experimental (empty circles) 
results for combinations of frequency and angular phase velocity that yield traveling 
waves in the acoustitron. 



Chapter 4 

Conclusions 

4.0.6     Summary 

The solution for sound propagation in cylindrical straight tubes and toroidal wave- 

guides for the case of a driven wall has been presented. For the cylindrical straight 

tube, the effects of the viscosity and thermal conductivity of the fluid medium on the 

propagation of sound were considered. The following results were obtained: 

• When the lossless fluid filled tube is driven with a combination of frequency and 

wave number that corresponds to a mode of propagation in a tube with rigid 

walls, the amplitude of the particle velocity is infinite. For the case of the air 

filled tube, the velocity amplitude is no longer infinite, just very large compared 

to the driving amplitude. 

• When the viscous and thermally conducting fluid filled tube is driven with a 

wall speed corresponding to the intrinsic speed of sound in the medium (cw = c), 

the radial velocity amplitude of the acoustic mode is zero, while for the lossless 
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fluid filled tube it is proportional to r/a. 

Also presented was the solution for sound propagation in a toroidal waveguide 

with the following boundary at the wall: (1) rigid walls, (2) rigid walls except for a 

single driving element in the wall, and (3) driven walls with a given wave number and 

angular phase velocity. The following results were obtained: 

• In the low frequency limit, the characteristic frequencies of the rigid wall toroid 

correspond to wavelengths that fit with an integral length along the circumfer- 

ence. This means that the curvature of the waveguide will not affect the sound 

propagating in the tube. 

• For the case of a tube with a single driving element driven at a characteristic 

frequency of the rigid toroid, the result is a standing wave of infinite amplitude. 

• For the case of driven walls with a given wave number and angular phase ve- 

locity: 

- When the driving frequency is that of a characteristic frequency of the 

rigid toroid, the response of the system is infinite (lossless case). 

- When the ratio of the angular phase velocity and the angular frequency is 

an integer value, the result is a traveling wave inside the toroid. 

The results of experiments performed indicate that sound propagation in a toroid 

with driven walls is well understood in terms of the theory presented. 

In order to include losses in the solution of sound in a toroid with driven walls, 

a theoretical value for the attenuation due to compliant tube walls was presented. 
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Theory indicated the presence of a resonant frequency corresponding to the material 

properties of the tube wall. Measurements were made verifying this behavior in the 

toroid. 

4.0.7    Extensions of this Work 

An acoustitron is currently under construction that consists of a square channel cut 

into an acrylic block to from a square waveguide. Piezoceramic disks will be mounted 

in the bottom of the groove and in the plate that forms the top. An advantage 

of this design over that used in this paper is that the absorption of sound will be 

less because of the rigid walls between the driving elements. The purpose of this 

device is to allow measurements to be made in liquids. It can also be modified by 

the addition of vertical plates along the inside circumference to form a stack for a 

traveling wave thermoacoustic engine. In thermoacoustics, it is desirable to place 

the stack at a position where the pressure and velocity are large, as well as out of 

phase by w/2 radians. In an acoustitron containing a traveling wave, the pressure 

and velocity meet this condition at all points along the circumference. This would 

allow a thermoacoustic effect to be produced along the entire toroid, as opposed to a 

single position in a standing wave tube. 

The following is a list of possible extensions to this work: 

• Consideration of nonlinear effects present for large driving amplitudes, such as 

finite amplitude sound and acoustic streaming. 

• Use of the acoustitron to measure the bulk speed of sound in a liquid or sediment. 
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APPENDIX 



Appendix A 

Useful Relations of State Variables 

(The following is taken from Reichl [46].) Variables that specify a thermodynamic 

state are referred to as state variables. Examples of some state variables are p (den- 

sity), p (pressure), T (temperature), and s (entropy). In general, given a function 

F = F(xi,x2), the differential of this function is defined as 

-=(a-(a- (A.l) 

which is sometimes referred to as the chain rule. If F is analytic and 

d   /dFs 

dx\ \dx2 xx XI 
dx2 x2 -> Xl 

(A.2) 

then dF is an exact differential. Differentials of all state variables are exact. 

Given four state variables w, x, y, and z, such that F(x,y,z) = 0 and w is a 

function of any two of the variables x, y, z, using the properties given above one can 
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obtain the following relations: 

fdx\ 1 
UA~/%y (A-3) 

(i), m. (i),=- 
(dx\   =fdx\   fdy\ 
\dw)z     \dy)\dw); 

ßyJz      \dyjw      \dwjy\dy 

These relations are used in Section 1.3 

(A.5) 

(A.6) 



Appendix B 

Digital Delay Circuit Diagrams 

Analog signals used to drive the acoustitron are passed through the analog-to-digital 

converter shown in Fig. B.l which takes the digital equivalent of the analog signal 

and feeds it into the digital signal processor. The main circuit shown in Fig. B.2 

contains the interface between the digital signal processor and the thirty-two digital- 

to-analog converters (labeled DBDAC). Figure B.3 is a single channel of digital-to- 

analog output. The voltage range for each channel of output is 5 volts peak with 

a resolution of approximately 2 x 10"2 volts (corresponding to 1 LSB). The sample 

frequency of the circuit is approximately 30 kHz. Each output is passed through an 

amplifier, designed for the specific capacitance of the piezoceramic drivers, shown in 

Fig. B.4. The net gain of this circuit is xlO, yielding a maximum driving signal of 

50 volts peak (17.7 volts rms). 

164 



Figure B.l: Analog-to-digital circuit. 
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Figure B.2: Main circuit. 
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Figure B.3: Digital-to-analog circuit. 
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Figure B.4: Amplifier circuit. 



Appendix C 

Software and Hardware 

Information 

All computer work done for this dissertation, was done with an IBM-PC compatible 

486-DX computer. Information about specific tasks performed are as follows: 

• The Texas Instruments TMS320C30 Digital Signal Processor used in the digi- 

tal delay circuit was located on a Sonitech International Inc. SPIRIT-30 card 

plugged into a 16-bit slot located inside the computer. 

• Theoretical plots shown in this work were calculated using FORTRAN 77 code 

compiled by a Lahey Computer Systems, Inc. compiler. Calculations of the 

Bessel and Neumann functions were carried out using library subroutines writ- 

ten by Donald E. Amos, of Sandia National Laboratories, available via anony- 

mous FTP from the INTERNET. 

• All plots were generated using Axum® . 
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• The solution for the roots of Eq. (2.10), as well as the linear curve fits to 

determine m in Eq. (3.6), were done using Mathcad® PLUS 5.0. 

• This document was produced by TgX using the I^TgX macro package. 

• All graphics were produced using Aldus™ IntelliDraw. 
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